Contents

Abstract

1. INTRODUCTION

1.1 ET4ODOWW32 Specilications
1.2 ET4000W32 Overview

13 Nolational Conventions
2. ETACOONW 32 FUNCTIONAL DESCAIPTION
2.1 VGA CRT Controler (CATC)

221 CRTCB O
2.2 Positionirg the CRTCB Window
2.3 CRTCB Data Forma:
2.2.4 Sprile Overview 10
2.2.4 Sprie Onerview
2.2.5 Positoning the Sp.it
2.3 Memory Control Unit \{MCL
2.4 Syslem Priority' Controller (SPC)
2.5 Multiport Cache
2. 6 Turnirg Secuencer (TS)
2.7 Graphics Display Conlroller (GDC)
2.8 Alribute Controiler (ATC).
2.9 Inage Port (IMA)
2.9.1 Imace Port Interface Protocol
2.10 Merrory Managemen: Unit (MMM
2.10.1 Soltwa'e Considerations
2.10.2 Hardware Consideration

Graphics Acce
2112 Starting an Accelerator Operation
2113 The Acceseralor's Queue
2.11.3 The Acceseralor's Queue
2.11.5 Passing Map Dasa to the Acvelerator

E 11.5. 1 Virlual Eus $\mathrm{Siz}_{2} \mathrm{e}$
211.5.2 Synchrorization
2.115 .3 Dala Algriment
2.11.6 Suppon for Com:not Graph.cs Operstions
2.11.6.1 Line Drawing...
2.11.6. 2 Tned and Fuxed-Co or Fills
2.11.6.3 Colp' Expansion
2.11.6.4 Clipping
2.117 Accelerator Interrups
2.11.8 Accelerator Stale Sive/Restorc
2.11.8: State-Save Interupt Haralor

21182 State-Restore Inlerfupt Hancle
3. ET40COW32 Piit Descriptions
3.1 Power On Beset Initialize (PORI)
3. 2 Bus Confiqurations

33 Hos Interace
3 S. 1 ISA Bus
33.11 ISA POR

3312 ISA Bus Interlace

3.3 .2 MCA Bus

3.321 MCA FOR:
3.322 MCA Bus Iniertace

317 CATC Indexad Register E. Cursor Address Midd
5.3.19 CRTC Indexed Registor 10: Vert.cal Sync Start 86
320 CRTC Indexed Feginter 11 : Verlizal Sync End86
. .87
3.21 CRTC Indexed Register 12: Vertical Display End87
3.22 CRTC Indexed Aegister 13. Fow Olise
3.22 CRTC Indexed Aegister 13. Fow Olise
88
5.3 .23 CRTC Indexed Fegister 14: Underline Row Address 89
. 89
.89
5.3.25 CRTC Indexed Register 16: Verlical Blank End 69
… 89
61
.3.27 CRTC Indexed Register 1 E : Line Conpare (Split Screen)91
91
5.3.28 CRTC Indexed Register 30: System Segment Map Comparato 92
$3 . \operatorname{CRTC}$ Indexed Regisler 32: RAS/GAS Dos$\begin{array}{r}. \\ \hline 93 \\ \hline\end{array}$
5.3.31 CRTC Indexed Fiegister 33: Exsended Start Address 94
5.3.32 CRTC indexed Register 34: 6845 Corrpaliblity Contro Negister tprotected by key)99
5.3 .34 CATC Indexed Register 36° viden System Conliguration 1 (VSCONF1) (pretested by key) IC1
3.35 CRTC Indexed Register 37 Videc System Conlipuration 2 (VSCONF? (protected by key) 103
396 ATC Indayed Register 3\%: Horizanal Dverion
4 TS Register Descriptions 1045.4.1 TS
104
2 TS indexed Registers 104
5.4.3 TS Indexed Fegister 0: Synchronous fiese 105
5.4.4 TS Indexed Register Y: TS Mode 105
5.4.5 IS Indexed Aegister 2: Write Plare Mas 105
4.7 Ts ndexed Register 3: Fon Selec: 107
5.4 8 TS Indexed Register 6: TS State Control (protected by KEY') 1095 GDC Recrister Descriptions 110
5.1 GDC Segmest Seleci
5.5.2 GOC index111
5.3 GDC indexed negisiers if1
11^{1}
5.5.4 GDC Indexec Regisle: 0: Set'Reset
112
112
5.5 GDC Indexeo Register : Enable SetiRese 113
5.7 GOC Indexed fienisier 3 Dats Petate and Function Select 113
59 GOC Indexed Repicle: 4 Read Plane Solec:
114
5.5.9 GOC Indexed Register 5. GDC Moce 115
5.5.11 GDC Indexed Register 7 : Cclor Cara.
116
5.12 GDC Incexed Regisier 8: Bir Mask
.6 ATC Redister Descriptions 117
62 ATC Indexed Registe

113
116
5.6 ATC indexed Registers 0.F: Paletle RAN 120
5.6.5 ATC Indexed Registe- 1 : Overscar Color121
.6.6 ATC indexed Aegirier 12: Color Plane Eriablo$+22$5.6.8 ATC Indexed Register 14. Color Se:ect$: 29$5.6.9 ATC Incexed Repiste i6: Miscellaneous tprolected by KEY5.6.10 ATC frdexed Hegister 17 : Wiscellaneous 1 (protocted by KEY5.7 CRTCB'Sprite Hegister Descriptions
5.7.1 CRTCE Index Feg:ster 126

MU Register Descriptions 137

MMU Memory Base Poin|er Regist

MMU Control Register 138
ACL Register Descriptions 140
1 ACL Suspend/Terminate Fegisler144
ACL Operation State Register142
ACL Sync Enable Register 142
act mempt Mask Register
143
144
5 ACL Interrupt Siatus Register.
145
145
\checkmark ACL Pattern Address Regisler
145
145
8 ACL Source Address Register 145
145
10 ACL Source Y OI Y Pi 146
147
11 ACL Destination Y Oflset Register 148
12 ACL Vinual Bus Size Registe
149
149
$13 \mathrm{ACl} \times \mathrm{OH}$ Direction Regisle 150
151
15 ACL. Source Wrap Registe 151
$16 \mathrm{ACL} \times$ Position Register 152
18 ACL \times Count Register 1519 ACL Y Cound Register 1519 ACL Y Courd Register 152
153
ACL Reload Control Register 154
ACL Background Raster Operation Register 154
ACL Foreground Raster Operation Regisler 155
W32 BIOS RON6 y BIOS ROM - e versus 16 -bit178
"Shadowi" RATM 179
B. 3 GA ROu versus System FOM irade ail 79
6.B. 4 Spectying179
69 Translation ol CRTC Index Rexisters ard Clock I'rezuencis 179
6.2 Transtation ol CRTC data registers
180
180
6.9.3 Use of Translation AOM 181
7. Programming Cornsiderations 182
7.1 Fext Modes 182
$7.1 .140 \times 25 \mathrm{Texl}$ modes 0 and 183
7.1.3 132×44 Tral (hades 18 and 22) 183
7.1.4 132×25 Ext Modes 19 and 23 184
7.16 6exec Tex! (Mode 26! 184
71.7500×40 Text $\operatorname{Mod} \Rightarrow 2 \mathrm{~A}$

185

185
2 Graphic Modes 105 185 185
$7.2 .1320 \times 200$ Four Coior (Modes A and 5 186
72316256 K Colors (Modes D. $̇, 10$ and 12) 187
$7.2 .4640 \times 350$ Monochrome (Mode F) 188
188
$7.26256 / 256 \mathrm{~K}$ Colors (Mode 13)
188
188
7.28256 .256 K Colors (Moces 20, 2E, 2F, 3J, 38) 189

ORTCEVSprite Horizontal Pixel Position Low (Index: EO).127
CATCENSprite Horizonlal Pixel Position High (Index: E1) 127
CATCB Width Low/Sprite Horizo
CRTCB Width High (lndex: E3). 128
CRTCB/Sprile Vertical Pixel Position Low (Index: Eq) 128
CRTCB/Sprita Vertical Pixel Position High (index: ES 129
CRTCB Height High (Index: E7) 129
CATCR/Sprid Slarting Address Low Register (Index: E8) 130
CRTCB/Sprile Starting Address High Register (Index: EA) 130
130
CRTCBISprite Row Oflset Low Register Undex. EB 130
CATCB Pixel Panning (Index: ED) 131
5 CRTCB Color Depih Register (Index: EE 132
CATCB/Sprite Conlrol (Index:
A Regisler Descriptions 13
dexed Addressing 134
MA Indexed Reviler F1. mage Sianing Address Midtic 135
IMA Indexed Register F2: Image Starting Address High 135
A Indexed Register F3: Image Transter Length Low
136
136
|MA Indexed Pegisler F5: Image How Offse: Low 136
$\ldots .136$
$\ldots 136$

6. Board-Levet Desion Considerations
7. Board-Leva 156
6.2 Hast Intertace Design Considerations 158
159
6.2 .1 ISA Eus 159
6.2.1.2 ISA Bus Special No:e 159
6.22 Micro Channel Bus 164
6.2.2.1 Micro Channel Bus POR: 162
2.3 Local Bus 163
6.2.3.1 Local Bus POn......... 164

- Display Memory Design Considerations 165
6.3.1 Memory type and upgrade consideralions: 167
6.32 Memory Resource Consideration 169
.3.3 CRTC Eandwidit Requirements 169
.3.5 Accelemator Bandwidth Requirements770
770
6.4 Image Bus Interface Design Consideration 171
6.5 Clock Generator Design Considerations 171
6.5.2 System Clock Select 171
6.5.3 Display Supporl and Videa Timing 178
6.6 video Clocx Design Censiderations 178
170

ET40Conwzs

VGA CRT Controller (CRTC)

:T4000/W32 intemal CRT Contrulter provides a 20 -bil lincar doubleword aldress, cursur control, and Verticol Syme lorizonal Sync contuols wextental raster-scan CR Tdisplays. Intemally, the CRTC derives all reference timing in two nsions: the horizutal display/blanking/syne and verical display/blanking/sync. Each ayeke in horizontal and verteca olved around the E $44000 / \mathrm{N} 32$'s CHARACTF.R and LINE reference logic. Each characler is based um mulliple of MCLK perionts. Both CHARACTFR andLINE reference logic can be asynchronously initialzcd via de S YNR inpua

Fiagran below displays the role that the CRTC registers play to effect the horisontal and verucai timings of the CRT
re 2.1-1: CRTC Video Timing Conirol Registers

 HtES: liorjzortal Blank Stazt HEE: Fiorizortzas Blonk End des: Hus izontal Gync Fed HoT. Hor'mantel Tot 7°

$$
\begin{aligned}
& \text { VDE: Vertical Display Erad } \\
& \text { VAS: Vertical Plank start } \\
& \text { VHE: Vertical Blank End } \\
& \text { vis: Vertical Sync stast } \\
& \text { VES: Vertical sync Frad } \\
& \text { Voot: vertical Tcoal }
\end{aligned}
$$

This moduts of the ET*000/W32 may be programmed as a hasciware qursor (Sprite) or as a secon:tary disalay window (CRTCB). The wo featurescannor, however, be used at the same time. Acontrol bit sprovided inithe CRICB/Spate Cortrol Register (Index: EF to select between the CRTCB and Sprite funitions.

The $\mathrm{ET} 4000 / \mathrm{NY} 32$ can be progranmed to infurn the host praxessor when be lasi scan han of the CRTC, or CRTCE/Sprite thas been displayed on each frame using a systern interay See Section 5.3.32, CRIC Index Register 35. bit 6

2.2.1 CRTCB Overview

The CRTC:B is a secondary CRIC display window, Is X / Y pos:tion, $\mathrm{X} Y \mathrm{Y}$ size, slarting address. widh, and colur depth can le programmed wia the CRTCB registers (sce Seccinn 5.J). Tie main diferences between CRTC and CRTCB are:
 line (Y) resolutien. The size of the CRTCE display can be progastrined Ifom 1 pixel x I the, wo the enlire CRTC display size.
 graphics) tec:mat only.
 is alwiys in 8 dots per :haracter mode regardless of the CRTC.'s timing state

222 Positioning the CRTCB Window

 The Wilth ard ldeight Registers are ; ;sed to tertrol the pixe! size of the CR TC: window. The followirg ligure shows the

Figure 2.2.2-1: CRTCE Window Positiun ind

[^0]The data for the CRTCB window is stored in the display memory. The exact location of the beginning of the deta in display The data for the CRICB wind memory is programmed into the Starting Address F

The Color Depth Register controls the formaling of the pixel data in memory


```
bit
} bpp
```



```
2 tre:
2 Lrevel
```



```
4vp
```



```
*
```



```
pixel nump
```


2.2.4 Sprite Overview

 is 2 bies, ercoded to have the following cficet un the displas

Eils $<1: 02$	Sprite Elfect
00	Sprite Color 0 (derited as 00)
01	Sprice Color 1 (derined as $\mathrm{F}^{\text {F }}$)
10	Transparent (allow CRTC puxcl througii)
11	Resacrued

225 Positioning the Sprite

 .

Figure 2.2.5-1: Sprite Positioning

[^1]he data for the Sprite is stored in the disolay memory. The exact location of the beginning of the data in display mentory' programmed into the Starting Address Registers. The data is stored in a contiguous 1024 byte area, artarget in the programmed into the Starting A
Howing linear "packed" format;

$\begin{array}{ccccccccc}3 & 15 & 14 & 14 & 13 & 15 & 12 & 12 \\ 1 & 0 & \vdots & a & 1 & 0 & 1 & a\end{array}$ oublewords after the first row, and so on in an increasing fashiom.

3 Memory Control Unit (MCU)

he Memory Conurol Unit provides programmatbe control or several asperts of the DRAM memory operatien
 ulse width), and tep (CAS pre-charge), are programmäble via CRTC Indexed Register 32.
Aemery address: provides up to 4 megabyte addersing space via multiplexed $A B<90$ and $A A<40>$ adtress interlace.

4enory fefresh: programable refresh frequency via CRTC Indexea Register 36

.4 Sysiem Priority Controller (SPC)

 e Display FIFOs, Graphics Daba Controller, Multipert Cache Controller, Aaceterator, Imuge Fort, and RAM relirest T!?
 vsolution and culor), and the memory bandwisth (i,e., the memory bus widh and access line). Use of the Grapinits tice:lerator andion the lmage Port can substancially yncrease perfornance by reducing the number of tust accesses.

Dthes factors also can contibute to the overatl pertormance. For exampie. the cache controles provides of:inaum wformance for sequentoal aucess rather than dandom, and host write operations are gencrelly fister than host read

 vesitn Considerations. 5 ection 6.3

2.5 Multipor1 Cache

 nemory cache simultancously. Muliport Cache provides the ETAOCOHY32 with the athiti:y to paralled process tisks. Even I the [MA port is updating an atiave second display window while the C.PL and Accelciater processer arc updoing the
 concurently.

2.6 Timing Sequencer (TS)

The Timing Scupucncer modute is responsble for providing basic timing control for boh the CRTCs and ATC. Timings controlled by the TS regisers include:

Ilorizonal conn: resotution: 8 ur 9 dols/character
-MCLK/2, MCLK/4, and IFCLK/2 (dotclock)

2.7 Graphics Display Controller (GDC)

The GDC assisti the CPU in wanjpulating pixel data that is in planar farmat in display memory. This jacludes rotateimaskit 2-plane, with any of four bootean functions--. in respontse wa single CPU write. Sy putting basic bit maspoperations in high speed hardware, the ET4(FO)NW32 dramatically increases stapbics processing throughput over soltware-dfiven solutions. The data manipulation capability implemented in the GDC is, however, applicable only For Plane systems and not for Limeas Bytc systems. This is hecause att the processing functions are designtd to menlipulace pixel data with one bit sourced from eachplanc. Forcxaniple, the color comparc function allows fou bits across four planes fone pixely to be compared to a predefincd color, therchy allowing eight pixels to be color-conjared simultanewasly by processing 32 bits or video data fone byte frem each planc).

2.B Attribute Controller (ATC)

 control every S, Iti, or 32 dot clevks. design'd fer both lext ind graphides video display applications. The AtC can process up to 16 bist of display data the rate of 50 NHz or 8 -bil pixed dula al a rate of 86 MHz In graghics montes, memory hits
 lcok-up table, and sent out scrally to the videe tisplay. Through this pixel napper, fee ATC supports "PLANE" (for it co:ors), "BY'ت" (250 colors) and "WORD" (65.536 wolurs) orie med pixel structures.

2.9 Image Port (IMA)

 MA port, make jensible 640×430. 15.7 riail:Ion colur, lual-motion (3 C farnefserund) diginal wadeo on derkeop compuler
 concoller.

The IMA port ss a physical interface between an asynchronsus processer such us an inage procepar for monion video, or simply a dedicated nlicroprocessor bigh-speed direct conmec:ipn, and the ETH000NW 32 controtler. The main mechanisms of dus high-speed direct cocmecion are:

1. Sustained asyachronous hreughnul rete uF: to $40 \mathrm{MB} / \mathrm{sec}$.
 datil wansfer.
2. The synchronzation of address generaton is by way of tramertine and oflufeven intet tace signals.

0 , then image row offiset value is added
r, then twiec image row offiset value is added
This process is repeaied

2.10 Memory Management Unit (MMU)

The ET4000/432 Menory Management Unit(MMU)providesa mechanisnt waccess tie full 4 MB rarge ofd:splay momory even though the display memory nay occuoy a much snadler region in the system's merrory spatce. Shis is accomplished by providing a fixed-size "apenture" limough which the display memory may be accessed. The apersure wares in sure lepending upon the system configuration; For typical VGA-compatible systems the aperture size is 8 KH . See the video Memory Map lable in Seccion 7.3 w sec how aperture sief is related to system configuration. The aperixre may be relocated on begin on any byte boundary in the 4 MB display menery space.

10.1 Soliware Considerations

Each aperture has a Memory Base Pointer Register (MBP) uhich is 22 b.s wrde. The MBP Regester spectlies the starling address of the aperture in the linear display menory

Ihe MMU provides three indeperident apentures. The host implicitly selecs whach apenure to use by virtue of the addres the hast is accessing. As an example, consider the case of the MMU buffer spaçe nocupying the address region from BBCOM through EDFFF (line six of the Video Mermory Maptatle in section 7.3). All accesses in the range of B8000 through B9fFF will be directed through aperture number 0 . BA00C through BBFFF use aperture nuthber 1 , and $8 C 000$ through BDFF. anerture number 2. Figure 2.10.1.1 itlustrales this address wanslatuon:

Tu

2.9.1 Image Port Interface Protocol

1. Extemal Image Processor produces IXFS and LXL\$ pulses signaling initiatization of tirear addecss.
2. ETAOOOF32 loads the image start address to the linear addres's generator.

If the interlace bit (IMA Indexed Register F7, bit 1) is sel th:
0, then loads the image start address to the fintear address gencrator
1, then (If $\mathrm{XXOF}=1$) Lands image stant address + image row offed to the tincar addiess generator
(If $\mathrm{DKOF}=\mathbf{0}$) loads image start address to the linear address gencrator
3. After the trailing edge of LXLS and sensing IXRD ready acknowtedgment, the image processor can begin in toggte the LxwQ ${ }^{+}$write request and place the 8-bii IM\&7:0) and IDMK byte rask at each ransfer. NOTE: IDMK, when equal to 0 , can be used to "walk" the address generatar's pointer withoul data being uarlsferred
4. The image processor continues to sample the IXRD ready (by cloch ing IXRD with the image presessor's itternal clock) If IXRD is asserted, the IXWQ* can be toggled, else MWQ* is theld at the high state.
5. If the number of donbleword connt transfers tas oceutred, then IXRD will bocome inative and wail for the IX1.S infut.
6. The image processor sents an LXLS line synchonization. If the IXLS input occurs before the duubleword corant tansfer is complete, the uransfer commer is re-initialised to zero, and the remaining data will wot be transferred
7. Upor the leadng edge of LXLS, the ETACOO/W32 will advance the linear address poiruer to the beginuirg eige of the
]直 August 20. 1992 @ $1: 11 \mathrm{pm}$
Associated with each MMU apernare are two control bits

- Linear Adjress Control (I.AC), and
- Aperture Type (API2 - .- - -.....

The 1.AC bit controls the organization of data in display memory for the given aperture. (Sex section 5.9 MMU Register Descriptions. MMLC Contml Regisfer for a description of the LAC bis). The LAC bil allows the programmer to access memery in a linear fastion, independent of the current display mode.

The AP' bit indicales that accesses through this apenture should be directect wo the accelerator, Namely, ir the APT bit is a " $[$ ", an access through this aperture will be plasied to the accelecator; otherwise the access will go through the GDC \mathbf{k} b the display memory

When the APT bit of an apenure is set to " 0 ", the MBP' for that aperture must be douhteword-aligned. This alignmen restriction arises from the fact that the internal GDC. cannol perionm a multiple-cycle operation to mentory, whict would be required if an access crossed a doubleword boundary. The accelefator does not have any such restriktion; so when the APT bit is sel to " 1 ", the MEP' can point to any byte beundary.
importand Note: A read through ant aperture with the APT bit sel 10 " 1 " will return ar undefined rusult. 'The chip does nom slow dan io be read from the accetcrator
 Basc Fointe- for the selected apertuse if he Aperture Type hit is "? "arki the hust is supply:ng Mix Mop cata to the Graphics Accelerator, uten the 13-bit host atdress is meltipled by 8 thefore being added to the Merthorv Dase Pointer. This is dote o compersate for the 8-to-t ralin of "byeles processed" in "bils in the Mix Man". Figure $2.10:-2$ deracts the addres ranslation precess.

As inentioned earlier, the size of the aperture depeads upon the system contiguration, For exa:niple, if the image port is being Used in a system lincar-mapped configuration, only 20 bisc of the hostadderess can be wired to the chip (since the imape Port uses some pins nomaily used by the host address bur). In this contaguration, bits 19 and 18 are used to select the aperture, while bits $<17: 0>$ are added to the Memory Base Pointer. The Video Memory Map in section 7.3 summarizes the effects of system configuration on the apenture saze.

2.11 Graphics Accelerator (ACL)

The ET 4000 N32 Graphjes Accelerator is the mosk cost-efficient method toexpedite functions used incommon apptications such as Microsnft Windows and other graphical user interface (GUI) solware. Typically, personal computer architcolure and processor performance limit the performance of operations such as BilBLTT or Raster Operaliuns. The ET4000/WJ2 allows the CPU wdistribute these tasksto its Graphics Accelerator. The Aceelerator is mapped to thoused areas of the display memory address space, and reconligures itself aulomatically when muliple adaplers are present, or it the VG,A swithes from graphics into text mode.

The El4000/w 32 Graphacs Accelerator provides a simple, yet powefful mechanism to accelerase the mevement and processing of graphics data. The accelerator architecture adheres to the RISC. philesophy of providing the basic buildang bleck for manipulation of graphics data ar a high rate of pesformance. white allow, ng the softyare eo manage the complexity of higher-level drawing algorithins. The accelerator has the capability foperate without Cid in inervention on graphics data of higher-levei drawing a gonimitls. The accelerator has the capability weperate whout cit intervention
in the display memory, or it may cake data from the CPU and mix it with data from the display memory.

Inside the accelerator are two prib:lary functiocel bleck:

- An address sequencer, and
- A graphics data processor.

By wing these two functions, much of the CPU-processing required to perform a Bit Block Transfer ("Btwi.T"j can be offloaded from the hosi CPL to the Graptics Accelerator. The Addreas Sequencer mantans axdrecss poineers wo theate data in display memory, and the Grazhics Data focessur cembires data from a Souce Map, a Paltern Mop, arad a Desteraticn Map, and writes it back to the Destination Map under the cartrol of paramelers programmed who the chip.

Maximum performance is atheeved by:

- Munimzing the armoutt of information that mbat the passed ac: processor.
 Graphics Accejeralor.

Graphucs Acceleralor

- Accesses to the display memery ate lowalered withi: the ET4COON 32 , allowing the best possible utidization of dispiay memory band wrdth.
 in certain aspeck of the ojeration For example, the progtatmacr may wish to have the Cel; provide control of addressing the mennory, bul atow the aucelerator th tike care of applying the Raster Opeation to the dow.

2.11,1 Overview

The accelerator supports the notion of a "Pixel Map", which is defined by two things:

```
- A starting address in display memory, and
- A byte-oflset from onte scan line of the map to the nexi scat line
```

The accelcrator operates on four "Pixel Maps":
I. Source Map
2. Pattem Map
3. Destination Mpp
4. Mix Map

Data from these maps arc combined according to the following rele:

$\mathrm{D}=\mathrm{FgdRop}(\mathrm{S}, \mathrm{P}, \mathrm{D})$ if MixMap hit is 1
 $\mathrm{D}=\mathrm{BgdRop}\left(\mathrm{S} \mathrm{P}^{2} \mathrm{D}\right)$ if MxMap bit is 0

The Foreground Raster Operatien (FgdRop) and Background Rasfer Operation (EydRop) are 8 bil valucs which wover any pessible combinat:onal mix of the thecemaps (? 1 atters, Source, and Destination). The encoding of these 256 ROP 's is 10 Cx counpatible with the M:crosoft Winslows specification.

The Destination and Pattern maps mast restice in whe display memory. The Source map data may reside in dirphay memory or be supplied by the CPU during an acceteraced graptaics operation. The Mix Map data nay be suppled by the CPL; or i
 or Mix da:a (or neutecr), but not both. The Mix May differs from the other thrce maps in thot it is a "monochrome" map: that is, for each bil prokersed in the Mix Nap, a typle is processed from the other three maps.
The tigure below shows the ;hath of the bye thritugh the: atcelerebres Giraphics Data Processor; ill reality more than one byite is proxessed at a Line.

11,2 Starting an Accelerator Operatlon

fier loading all the necessary accelerator control registers (e.g., X/Y Count Registers, Map Saarting Addresses, Y Oftses F Wrap values, Raster Operations, etc....), i graphics operation is initiated in une of two ways:
The host performs a write to the display mernory, using the MMU Buffer Spase. If the APT bit for the MMU apernure is" $]^{\prime \prime}$, then an accelerator operation will begin. The address whish is generatidby the MMU Uranslation is is liplis tuy loaded into the Destinatiost Address Register in the Acceleratar Queue, and the acceleralor operation is beguln, Thus, the act of writing to the display mernory using an MMU aperare which is in "aecelerated mode" implicitly specifics that area of memory to be the Destination Map.
...OR...
The starting address of the Destination Map can be explicirly loaded into the Destination Address Register, and then a write to the Accelerator Operation State Register can be performed with both the "Resurne" and "Restare" conturol bits set to "1".
n accelerated graphics operation is defined as a two-dimensional "walk" hrough display memory. The X Count Registen id Y Coum Register specify due limits of each dimension.
equential bytes are processeduntil the prograrnmed limitef the X Count Register bas been reached. At that iime, each map's Offsel is adjed to that map's staring address, and the X-walk is repeated. This sequence repcats untit be programmed mit of the Y Conto Register has been reached.
he accelerator always operates on pixel maps as if they are in lincar format in display memory. The atcelerator uses the MU only to ranslate the starting Destination Address. The accelerator does not use the MMU to perrorm any address anstations while it is perforning a graphics operation. In other werds, the MMLionly uperates on addresses front the host,
 ny MMU-related registers while the atcelerator is in the middle of a graphias operation

11.3 The Accelerator's Queut

The ET4000/w 32 has a one-level queue of registers for he Graphics Accelerator. In addiloa to the queue, there are registers
 hos wo modifying the registers in che queue while the accelerator is running. The figure below shows the data taite west the host quewed registers, and accelerator regiscers. For most graphes operations, the queue stans oul as teinty

ETC000/W32 Queued Registers and ACT Internc. State
 each graphics uperation.
 ius: wriben ki a register in :he queut. Jf the bost wishes to read che contents of the quene, it must first cause a "Irangfer"
 the ACL Operalion Store Register with kio athe"Rusture"biliseto" 1 ". Naturally. the host mast cnsure that theaccelerater is idfe whende Resige is performed. There is a slight diffeence in the swerage of the Sourceard fattern Address Registers;

 a stifit by one. Conversely, all of the ober regisers are euntigurch at a two -stige sh:fi register.

The accelerator maininins internal copies of the Source Address, Fattern Address, and Destination Address Registers which it inerements as an accelerator operation prugresses. The CPU may use the internal Source and Pallem Address Registers as the starting point of a subsequent arcelerator operation by setting the sppropriate bits in he ACL Reloar Control Register as he starting point of a subsequenitaceierator operation by seting the sppropriate bis in he ACL Reloar Conurl Register Address Register) will point to the first byte of the next scan line to be processed. For cxample, Fa A BitBLT is iniliated from $(0,0)$ with a width of $4(\mathrm{XCNT}=3)$, a height of $2(Y C N T=1)$, and a Dircecion of X / Y Incteasing ($\mathrm{DR}=60$), then the final Source Address will be the linear address that corrcsponds to the byte at an $\mathrm{X} / \mathrm{K}_{\text {-position of }}(0,2)$.

The accelerator alsomaintains an internal copy df the X Position and Y Pusitionas an actelerator operation progresses. Thesc position registers serve as a"reference" pointer into cach of the mapps to indicale how far the operation has progressed. The XPosition and Y Position Registers shouldbe initialized to zetro when the system is powered-up, and if they need to be loaded with nor-zero values for a State-Ssve, they shouid subsequently be loasted with zero before resuming operation. In other with non-2exo values for a Slate-Ssue, thay should subsequendy be lasked, wial zero before resuming operation. In oner
words, the programmer should ensure that the X Position and Y Position Registers in the queve are zero before any graphics operation is begun; but it is not necessary to spent time loading the registers beforc every operation.

The internal address register for a map is only updatcd if that map is nected to perform the programmed Rasser Operation. If the host is supplying Source data, the intemal Source Address Regiscer (SSA) will not be altered. Basicelly, by using the Address-Route (ADRO) and Data-Route (DARO) control fields in the ACL Routing Contol Register (see Seclion 5.10.20), the progratumer cal perform the following types of operation:

ADRO	DARQ	Dala Movemen	Address Stip	Nowes
00	000	Scres-to-Screen	BLT'	Nohost involvement, all maps in display mem
00	001	Hust-to-Screen	BL'J	Sre data from host
00	010	Hosi-to-Strenl	B[']	Mix date from host (c.g. Color Exparsion)
01	1000	Screen-w-Screen	hast contrels	c.g. draw cirslc, linc, cte., pixel-by-pixel
(b)	[01]	Hasi-w-Screen	hast controls	host provides Stc data
(1)	(110)	Host-to-Screen	hust custrols	host provides Mix dala
0 x	100	Screen-to-Screen BLT	host provides	X Count (e.g. draw lise segment)
0x	101	Screen-to. Screen BLT	host provides	Y Counl (e.g., draw line segment)

NOTE: All furctions fcature 3-way ROP berween Sre Fal, Dst, wibit ROF selected by the Mix Map Fathorn is always assubed n be in the display memory. The MixMep data can be fixed to " l ", or be previded by the host; it cannet originate fromit the display memory.

2.11.5 Passing Map Data to the Accelerator

2.11.5.1 Virual Bus Size

To specify the passing of datid froun die host to the arcelefator, the conecpt of "Yirtiod Bus Size" Fis been developed The Virtual Bus Size is used to etiminate the effects of different physical system buses on the way dath is transfered wite accelcrator. The Yirtual Bus Size allows the chip to be progranemed and to furction in the exacl same manner whether is is conrected te an 8-bit sysuem bus or a 32 -bir system bas, for example.

The Vinual Bus Size can be programmed to 1 -byte, 2-byu:s, or 4 -bylas. Tulentaly, 山he Host Interface or the ET4COO/W32 "waits" for this many bytes, then releases the data to the atcelecator The Viatual Eus Size is onfy enforced when the CPL is passing \$ource or Mix Map data to an accelerated eperation; all uther wries w ine chip operate normally. If the Virtual Bus Size is programmed to mateh the size of data unster that os being done in the host assembly language, the accetcratur will always give correct results nomater how many bus cyeles are required to transfer the data, and no mather what aditessorder the bus rycles are in.

Several important restrictions arize from this approach:

1. Alt CFU double-word writes to the accelerator must be doable-word aligned.
2. All CPU word writes to the acceterator faust he word sligned.
3. No restrictions on byte writes.

Once again, it is impurtant to understand that these restricuins are only for wriles of Source or Mix Map data to the accelcrator; there are ro restrictions on ordinary reards/writes to rezisters or to the display mentory.

To harde word or doutte-word writes to an unaligned Destination map, the MMU Memory Base Pointer Register can be set to any byte brounclary. This permis the EI $4000 /$ W32 to manage all unaligned data, while the CPU acts as if the map is aligned. This also maximizes performance by eliminating deuble of triple bus cycles on the host bus.

If the host is supplying Source or Mix datiand the XCNT is nol a maltiple of the number of byles specilied by we Vinual Bus Size, then the "extra" bytes at the end of the line will he ignoved.
 dircecion, the initial Pater: Address, for example, should point to the tast byte of the Patem map. Tlis is independent of

 Map. For example, if VBS is 4 -bytes. the initiating write should address the last doubleword of the Destimation Map. The Accelcratos inlemtally cakes are of pornting to the corat slarting byte.

2.11.5.2 Synchronization

Afolizer impo: Lint issue when passing data from the hust to the acelerator is synchrenization. What we have here is two
 the: the two precessers remain in sync. This dirotiting can be dene at one of two levels, the soflware tevel or the hardware level.

 recominended.

 waluc posistle (us:ally 1 byles) wher passing Souge Map dex; and sel to one byte wher passing Mx Map data.

2,11.5.3 Data Alignment

 dupencing or dte priqrarimed X Duection.
 significara bit of the Mıx Map is anchored to the left-rnost edge of the Destination Map.

11.6 Support tor Common Graphics Operations

is section offers programming suggestions to perfarm some commor graphics operutions. This is by no means an haustive discussion; the programmer is encouraged to gain an understanding of the core functions that the Graphics scelerator provides and decide how to best put thern to use for specific operations,

11.6.1 Une Drawing

eGraphics Accelerator can draw vertical, horizonial, and diagonal (slope of +1 or -1) tines by appropriate prugramming ertain registers:

XCNT	YCNT	YOFFSET	TYPE OF LINE
$n-1$	0	don't care	Horizontal
0	$n-1$	$w-1$	Vcrical
0	$n-1$	$(w-1)+1$	Diagonal

where: $\quad n=$ lenglh or line (in byles)

$w=$ widdh of pixel map (in bytes)
ny tine drawn using Bresenham's algorithm is made up of smaller lise segmens which arc all fwrizontal, or all vertical, all diagonal. The prly difference among these smatler line segments is the tength of the segment. The atcelerator allows e programmer to specify a destination starting address and the iength (XCNT or YCNT) with a single bus write cycle wo echip. Thus, the inner loop of a line drawing routine need only contain a single write to the chip (plus wivateveralgorituaiic ocessing must be done), thereby minimizing the number of hus transters requited to the thip. II is impor latut to nute that ese write cycles must be a size of one byle, so the upper 4 bits (hits $<11: 8>$) of the Counn register wiust be peviously loaded ith the necessary value. This type of accelerator operation is achieved by programming the DARO fied intle ACL. Ruuthe ontrol Register (see Section $\$.10 .20$) to be 4 (io bad the X Count Register), or 5 (to load the Y Count Register).
or simplicity, the table shown above is for 1 byle per pixel. It is a simple task tr adapt the table to other pixel depths. Felow the same table, generahzed to allow differcm pixei depths:

XCNT	YCNT	Y OFFSET	TYPE OF LINE
-* b-1	0	doric care	Ftorizonta]
b-I	B. I	($w \times$ bj- ${ }^{\text {d }}$	Venical
b-1	n-I	(wx $\mathrm{m}_{\text {) }}$ - $-\mathrm{l}+\mathrm{b}$	Diagonal

where: $\begin{aligned} & \mathrm{n}=\text { Iength of line (in pixels) } \\ & w=\text { width of pixet map (in pixels) } \\ & b=\text { bytes per pixel }\end{aligned}$

11.6.2 Tiled and Flxed-Color Fitls

th the Source and Patuen Maps can be progranmed to "wrap" or "tife" at the graphics operation progresses The ogranmed staring address for the map indicates the corner of the tite which will be repeated trough he operation.
ce Soures and Pattem Maps can be conligured as fixced color maps by programming the $\mathbf{X / Y}$ Weap values if A -by- $\mathbf{1}$. If Destination is 8 bil-per-pixel, the 8 -bil fixed color must be witten anto all four bytes of the Source (Fatten) inaps. Ins a be thought of as an X Wrap value of one byle. Simtarly, an X Wrap of two oyles can be achieved by duptieating the o bytes to fill the four bytes of the map.
2.11.6.3 Color Expansion

The accelerator is capable of expanding a 1 bit-per-pixed (monochrome) pixel map into an 8 bit-per-pixel map. This is arcomplished by setting the Foreground ROP to "Sre", and the Background ROP \&o"Pat", and supplying the I bit-per-pixel map as the Mix Map. A "b" in the Mix Map will resula in the Fixed color in the Fattera map o be written to the Destination, and a " $]$ " in the Mix Map will draw the Source color into the Destination. Of cumse, tt is alsa possible wintate the Foreground ROP a function of the Source and Destinaton, and the Background ROP a function of the Patem and Destination if this is required.

2.11.6.4 Clipping

For the most part, rectangutar clipping must be donle by de software; however, clipping with a data mask can be acomplishod by using the Mix Map and programening the Batkground ROP to "Desl" and the Foreground ROP as desired. This allows each bit in the Mix Map to control whather the corresponding byte is processed or teft alone.

2.11.7 Acceletator Interrupls

The ET4000/w 32 is capable of generating a system intertapt on thee persible condtions:

1. Write Intertupi - This incerupt iz gencrated white the queuc is in the state of being "not-full". This stitus indicates that the quene is reauly for another write to it. This is a state-triggered in:grupr; ;e., the iameraph line is asserned while the queue is in the state of bejag "not-fall". The ancritept is cteared by disabling it (writing a "O" whit Oaf the ACL Intemupt Mask Register).
2. Read Interupt This incerrupt is generated wher, the queuc ts onjhy at:l the atcelerator goes trom busy to ide, indicatiag

 results frum the display memory and from aby of the acceleraton resishers liat art modified dwing the course of an aceeferated graphics operation. This is an event-diggered incersupf i.e, the intertupl line assers when the accelerator
 AC.L Inter rupl Stalus Register)

 the ACL Interrupl Stalcs Register)

2.11.8 Accelerator State Save/Restore

The ETE000/w.32 provides a mechanism for suspencing an actue giaphics ujeration. saving the stite of the operanon, restoring the state of an opuration, and resurbing the napapion Flis tyate of feature is often required by mult-casking
 switchis required; the psecide-code below outines the steps required to save and restora the wato of the Graplic: Accelerator

T
 August 20. $1992 @ 1: 12 \mathrm{pm}$

2.11.8.1 State-Save interrupt Handler

Write " 1 " to bit 0 (SO) of ACL Suspend/reminate Register. /* suspend soperation */ while (STAT.RDST=1) F wail for accel op w complete ${ }^{*} f$

Write 'or' to bit 0 (SO) or ACL Suzpend/Terminate Register
WBy row, accelcrator is not doing anything */
tead all acceleralor registers from chip (including STAT) and save into local array, called SAVEI. Write " 1^{n} to bit 0 (RSO) of ACL. Operation State Register. $\quad \rho^{4}$ "shifis" slate from quewe \geqslant Read Source Address and Panteri Address Registers from chip and save into variables called ISA and IPA. Write "1" to bil (RSO) of ACL Operation State Register. f* "shifis" shate from queue */ Read all accelerator registers from chip and save into local array, called SAVE2
Write "l" to bit 4 (TO) of ACL Suspend/Terminate Register. f* terminates operation and rescls accelcrator *f while (STATRDST==1) / ${ }^{*}$ wait for Read-staus OK */

Write "0" to bit 4 (TO) of ACL Suspend/Terminate Register.
Done with State Save.

2.11. 2 State-Restore internupt Handler

Load the amay SAVEI back into chip (ineluding STAT).
Write "1" w bito (RSO) of ACL Operation State Register. /o "shifts" state from queue */ Load ISA and IPA into Source and Paucm Address Registers. Write" " to bit 0 (RSO) or ACL. Operation State Register. fo "shifts" state from queue "/ Load the amay SAVE 2 buck into chip.
Write (SAVEI.STAT \& 8) to ACLL Operation State Register. /* resume screen-ta-screen op if necessary $\%$ Done with State Restore

3. ET4000/W32 Pin Descriptions

The ET4000/w 32 provides a flexible inter face to different lypes of CPU buses as wetl as options such as the image port, high color DAC, and hardurare sprite. Jt is compaibie with the following CPU buses:

- 15A 8/16 bis

- Micro Channe! sil 6 bis
- Local Rus 386/486 SX/DX Ify 32 bits
- VESA LEUS

A specific host bus type is selectod by pulling the LCPC and AEN* input pills io appropriate levels a: seset. A Power On Resen Injialize (fORI) scheme is used to determine different configurations tor each lus lype to ensure full hardware compatibility.

3.1 Power On Reset Initilize (PORI)

During the high to low dramsition of the REST signal, DE $<15: 0<$ is fatehed internally. The se fatchert dota buts are used to
 via a series resistor to ground, or driven low with a tri-state bulifer duriang resel.

```
Destription of temms
1. = Inpul
O}=\mathrm{ Oulput
10 = Bidsactional
IWWR = Fower mpol pim
ITL = Pin mas scmadard TTL injut and output threstolds
CMOS = Pin has standard CMOS inpot and oulput thresholds
S =Schmul Tagger on unput
OC = Open-coliector these are attully tr-stare ourgints, triven low, lloal highy
I*) = In<crma passuc puil-up
1m) - - ntema! passive ful--down
H2 - Outpul bufer can sourceismk 2mit
H2 = Oufpul bufles can sourceismk 20iA
H4 = Ulapu; bufler can source/s:nk 4miA
H8 = OutpuabolTk; calm source/sink 8mA
Hagh = Voliges lesel be:mesen 2.0v and VDD (alse atbreviated "H")
Lou = Vollige level bx:wern VSS and OTV (also abbrevialcid "L')
* = ActiveLus
```

TS = Cri-state

```

```

(4) $=$ - mermal poserve pull-up
$\mathrm{H}_{2}=\mathrm{O}$ upu buffer can sourceismak 2 miA

```


```

= Active Lex

```

Table 5.0-2 ET4000/W32 Mapped Regisiers, RW Operation, Size
See Section 7.3 for the memory base address for the MMU and ACL fegisters. The offset in the tathe below is added to the basc address to calculate the actual address of the regisict.
\begin{tabular}{|c|c|c|c|}
\hline Begister & R'W & Memmery & \\
\hline Memory Management Liniloyvt & Oneration* & Olfser & Bils \\
\hline MMU Base Pointer 0 & Rw & (0) & <21:0> \\
\hline Mmil Base Pointcr 1 & RW & 14 & <21:0) \\
\hline MMU Base Pointer 2 & RW & 08 & <21:0 \\
\hline MMU Cunrol Registar & RW & 13 & <7:0, \\
\hline \multicolumn{4}{|l|}{Graphics Acceleralor (AC.L.)} \\
\hline Suspend/I crminate & kw & 30 & <7.0> \\
\hline Ojeration State & HO & 31 & <7:0) \\
\hline Synce Enable & RW & 32 & <7,0\% \\
\hline Inierrupl Mask & RW & 34 & <1:0> \\
\hline Interupt Status & RW & 35 & <7:0; \\
\hline Ascelerator Status & RW & 36 & <70\% \\
\hline Paticm Address & RW & 80 & <21:0> \\
\hline Source Address & RW & Kis & <21:0> \\
\hline H'alem Y Offer & RW & 88 & -11:05 \\
\hline Source Y Oilsct & RW & 8 A & c11:0s \\
\hline Destination Y Offset & RW & 8 C & <110\% \\
\hline Yirual Bus Size & RW & 8 E & c7:0> \\
\hline Xfi Direction: & RW & 8 F & c7:0 \\
\hline Patem Wrap & RW & 9 & <7.0) \\
\hline Source Wrap & RW & 92 & 470) \\
\hline X Yosition & EW & 94 & -11:0> \\
\hline \(Y\) Yositicn & RW & 46 & c11:0 \(>\) \\
\hline X Cour.: & RW & 98 & <11:0> \\
\hline Y Couri & FW & 9 A & c11:6 \\
\hline Rouning Contol & RW & 9 C & 70 \\
\hline Reload Control & RW & 915 & 3:0\% \\
\hline Batkground Rastei Operatior: & RW & 915 & 9:0> \\
\hline Foreground Raster Operation & RW & 9 F & c70\% \\
\hline Destination Address & RW & A0 & c2.1:(b) \\
\hline
\end{tabular}
- See Section 2.11 .3 mi reading and writing ancelerator regislefs

気

\section*{TiU}

\subsection*{5.1 General Registers}

The ET<000hw32 has five General Registers, eart with its own pert aldress allowing dircel programming access. and requifing no pairing of index and dala registers. The input Status \#t and Feature Conuol cegisters bave sep:ixtce adtressect for monochrome and color modes

I/O address - 3 CC reatr; 3 C 2 wric
\begin{tabular}{|c|c|c|}
\hline Bãl & Description & Access \\
\hline 7 & Vertical Retrane Folirily. & KW \\
\hline 6 & Horizontat Retrace l'olarily. & RW \\
\hline 5 & Fage Select for Oidieven, & KW \\
\hline 4 & kescrued. & \\
\hline 3 & Cluxk Select 1. & KW \\
\hline 2 & Cluek Selec:0 & RW \\
\hline 1 & Enable Ram. & RW \\
\hline 0 & 1/O AdJress Seleat. & kW \\
\hline
\end{tabular}

1dirdwaie rescls rcturr: all bits te rero.
Bit Description

 pularities is as eallows:
\begin{tabular}{ccc} 
vspnc polarily & Hesyn pelarily & Venisel siz \\
+ & + & 768 lines \\
+ & - & 400 lines \\
- & + & 350 lines \\
- & - & 480 lines
\end{tabular}

Whem sel to C, stleth posilive homisonial serace polanty.

When ser :0 ], it is the defaill ion operation of tic HiRus lex mone.
When sct to 0 , selects the hight page of memory.
Buls a:? Used to seleat inc clock rate atcordinf bo the fotlowing cable
R: t
32
00
00-Seteess MCIK chock
0 J-Secals MCILK Eack
1) Sulan Men anh
1)- weleck MC.I.K clock 4


\section*{T}

Bis \(<3: 2>\) of the MISCOUT register (CS \(<1 ; 0>\) ) can be translated to provide compatibility between the EGA mode and the EGA moritor whea the extemal clock seleci circuin is comnecled as follows
\begin{tabular}{ccc} 
CS1 & CSO & Clock Frequency \\
1 & 1 & - \\
1 & 0 & 32.514 MHz \\
0 & 1 & 28.322 MHz \\
0 & 0 & 25.175 MHz
\end{tabular}

The clock select bits \(C 5<1:( \}\) can be translated by the ET 4000 W 32 according to the following conditiuns
NOTES: \(\quad 1 E M C K=C R T C\) Index 34 bir 0 and \(E N X L=C R T C\) Inde \(x\) bic 5
2.If \(\mathrm{CS}<1: 0>\) arc used to select the extenal switith setiong, care must be tiken to ensure proper seloction of the switch setting after the (ranslaisun of CS \(<1: 0>\)

In VGA node:
a. If EMCK bit is set we: \(\mathrm{CS}<1: 0>\) arc equal to the progranmend valuc
b. If EMCK bil is sel to 1: \(\mathrm{CS}<1>\) is cquali to the progranmed value, wnd \(\mathrm{CS}<0\) ) is caual to inversion of programmed vatue

\section*{In GGA mode:}
a. if \(E N X L=0\) then:
pogramed \(\mathrm{CS}<1\) : \(1>\); ourpul \(\mathrm{CS}<1: 0\)
11000
\(\begin{array}{ll}10 & 11 \\ 01 & 10\end{array}\)
\(00 \quad 01\)
b. if \(\mathrm{ENXL}=1\) then:
1. If EMCK b:t is ser to 0 : \(\mathrm{CS} \subset 1: 0>\) are equal to th programmed valise
CK the is set io : CSc \(1>\) is cqual to tho
progranimed value, and \(\mathrm{CS}<\mathrm{O}>\) is cquat to inverston
of programined value.
h1 6845 mbitc: CS e1:0> are cqual to the programperd value
Bit 1 When set to 1 , enables access to disiplay memery
When sel to 0 , disatbles bisplay memory access from the thas
 ColoriGmphics Moritor Adapter emblation

When set wo 0 . sets CRTC addressesen 3HX and 1: 2 put Status Register I's address tu 3B A formenochrome enulation.

\section*{Ti}

\subsection*{5.1.2 Input Status Register Zero}

1/O address \(=3<2\)
\begin{tabular}{|c|c|c|}
\hline Description & * & Access \\
\hline CRT Interrupt. & & RO \\
\hline Feallire cone 1. & & RO \\
\hline Fcature code 0 . & & RO \\
\hline Switch Scnse. & & KO \\
\hline Rcserved. & & \\
\hline Resserved. & & \\
\hline Keserved. & & \\
\hline Rescrved. & & \\
\hline
\end{tabular}

Io ser the kEY:
Wrice 03 to Hercules Compatibidizy Register (9BF); -Wrik ato Mode Control Rezister (3isk):
To lure OFE Une KEY:
\[
\text { - Se: } 308 \text { (ur 3D8) te a value not cipual to AO }
\]

Addisionalty:
- Sel 3DE - 29

3 cl 3 Li -

\section*{Bit Description}


 featare tilut

NOTE: The cxicr:al featcre inful bits 6 \& 5 are DBel:0> bus status at the last REST' low-to-high transition. If the DB<1:6> are not "pull-down" by a IK resistor, then a "II" stulus will be the defarlt valus:
\[
\begin{aligned}
& \text { nov } \mathrm{dx}, \text { ?EFh } \\
& \text { rouv al. } 3 \\
& \text { vol dxal } \\
& \text { mior dx.3D8h-3E8ll in miono moce } \\
& \text { mov at.0.a. } \mathrm{H}_{1} \\
& \text { (ic: } \quad \mathrm{dx} \text {, at }
\end{aligned}
\]

 the swilct: to read.

\section*{这 August 20, 1992@1:17 pm}

\subsection*{5.1.3 Input Status Register One}

\section*{\(1 / 0\) address \(=3 \mathrm{BA}\) (mono)/3DA (color)}
\begin{tabular}{lll} 
Bit & Descripilon & Access \\
7 & Vertical retrace complement & RO \\
6 & Reserved \((=0)\). & \\
\(5: 4\) & Video display fecdback zest & RO \\
3 & Vertical retrace. & RO \\
\(2: 1\) & Reserved \((=0)\). & \\
0 & Display enable complement. & RO
\end{tabular}

\section*{Bit Description \\ Bil 7 A value of 1 indicales that video data is currently being displayed.}

A value of 0 inducates the verical blanking or verlical border time. (Sec Figure 2.i-h)
Bits 5:4 Used for diagrostic purposes. They are selectively conriected to two of the ejg't coler ouphus of the Alcribute Controller. The Color Prane Enable (ATC Indexed Register 12 ) register wonlois the muliplexer for the video wirang. Available combinations are:
\begin{tabular}{|c|c|c|}
\hline Color Plane Register Bits & \multicolumn{2}{|l|}{Irput Status Register One
Bits} \\
\hline 54 & 5 & 4 \\
\hline 00 & P2 & AFO \\
\hline 01 & P5 & AP4 \\
\hline 10 & P3 & \(A^{\text {P }}\) \\
\hline 11 & P7 & \({ }^{\text {A }}{ }^{6} 6\) \\
\hline
\end{tabular}

A value of 0 ind:cates chat viden data is curcertly theng dispiayed.
A yalue of 1 indicates a verical retrace interval dering the vertical syfie: pulke.

display enable sigral.

\section*{Wilil August 2C. 1992 ( \({ }^{\circ} \mathrm{Fm}\)}
5.1.4 Feature Control Register
10 adidess \(=3 \mathrm{CA}\) rear; 3 BA 3 DA wno
\begin{tabular}{lll} 
Bit & Description & Access \\
7 & Enable NMMI encration. & RW \\
6 & Reserved & \\
S:2 & Menitor ID. & RO \\
1 & Fear (I) & RW \\
0 & Feat (0). & RW
\end{tabular}
cal RW
R
NOTE: The "KEY" must be sel in order to read bit 5:2. and 7. See Seaton 5.1.2. Inpul Starus Registes Zerajer definituon e: "Kt:Y".
 mode (CRTC. Indexat Register 34, bil 7=1)

 Tris bil earamly be set if the 68.45 emulation mode is active
Osed is tead batk the MONED<5:2> pins (MONND<x:2> ior Lexal
Bis I:
Has loor monar dertifiblion sec



\subsection*{5.1.5 Video Subsystem Enable Register \\ \(1 / 0\) sddress \(=3 C 3 / 46 E 8\)}

The Vidoo Subsystem Enable Register is accessible via one of two localions ( 03 Cl or 046 E \% , selested by bit 7 of CR रC indexed Register 34. If the Video Subsystem Enable Register is al 03C5, then bil 0 is the "Enable Video Subsystem" biL The power-up defautt has this register at \(03 \mathrm{C3}\).

When the video subsystern is disabled, the chip does not respond to any host read/writes, except to the Video Subsysten Enabic Register.
\begin{tabular}{lll} 
EHt & Description & Access \\
\(7: 4\) & Rescrved \((=0\) ). & \\
3 & Enable vidco subsystem (address 46,5R). & RW \\
2:1 & Reserved. & \\
0 & Enable video suhyystem (address 03C3). & RW
\end{tabular}

\section*{ail Description \\ Sil 3 When sel wo 1 , enables the vidco subsysuem when the port addiess is configured for \(45=\mathrm{x}\).}

Bit 0 When set to 1 , enables the video subsystern when the fort address is conf.gured for address 3C 3

\subsection*{5.26845 Compatibility}

The ET4000/N32 features regiser-level compatibitity with the 6845 thif. The injultoulpul congol port usec in selting up the basic display formats are as follows:
\begin{tabular}{|c|c|}
\hline Port & W Por Addices \\
\hline 6845 CRT control register & 03 F 4 \\
\hline 6845 CRT data tegister & 93/45 \\
\hline Display mote control & 0348 \\
\hline Display celor coritrol & 935* \\
\hline Display status control & 03*A \\
\hline
\end{tabular}

\section*{Ti}

\subsection*{5.2.1 Display Mode Control Register}

W address \(=3 \mathrm{DS}\) (colos)

\section*{Descripion}

Reserved.
Bil 1 of the Hercules Compatitidity
Register (3RF).
Eriable blink (texi mede only)
\(640 \times 200\) mede.
Erable screen display.
EAable screes
Erable graphics mode. 8t 625 icxtmode.

\section*{Access}R \()\)

Descriplion

Bit 1 of the Hercales Compautillity Register; a read-urly bit

When sen to 1 , selcats the \(610 \times 200\) blazk and whise graphice mode.
Br: 3
Whan set :c l, enafles the videc siegnal during micse changec.
When set to I, selects the tilack and white mode
When set to it, selects colan mand.
Bi: ]
When sel te L , selects the \(320 \times 200 \mathrm{APA}\) nose.
When sen to 0 , selects the \(\mathrm{A} N\) mose.

When sen in 0 , sctects \(40 \times 25 \mathrm{AN}\) mode.

\section*{T}
5.2.2 Display Mode Control Register

INO address \(=3 \mathrm{BS}\) ( (monochrome)
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7 & Pagc selecs & RW \\
\hline 6 & Bia 1 of the Hercules Compatibility Register ( G BF ). & RO \\
\hline 5 & Enable blink. & RW \\
\hline 4 & Reserved. & \\
\hline 3 & Linable screen display. & RW \\
\hline 2 & Reserved. & \\
\hline 1 & Monochrome graphics mode. & RW \\
\hline 0 & \(80 \times 25\) text mode. & RW \\
\hline
\end{tabular}
\(80 \times 25\) text mode. RW
\(\begin{array}{ll}\mathrm{Bil} & \text { Description } \\ \mathrm{Bit} 7 & \text { Wher ser to I, selecte the top 32KR page starting at B } 8000 \text { (for Hercales compatiailily) }\end{array}\)
When set wo 0 . selects the low 32 K 3 page (starting at B 0 O 00 )
NOTE: This bit can be set only when bit I of the Hercules Compatibility Rezeister ( 38 sf ) is ise 10 I .
Bit \(6 \quad\) Bit 1 of the Flercules Conpalibility Reg:ster, is a read only bic

Wher set to I , selects the \(80 \mathrm{x} 25 \mathrm{~A} / \mathrm{N}\) mode
When set in 0 , selecs \(40 \times 24 \mathrm{~A} N\) rionte

\section*{T}
5.2.3 Color Select Register

1 10 address \(=3 \mathrm{D} 9\)
\begin{tabular}{|c|c|c|}
\hline Bit & Descriptlon & Access \\
\hline 7 & Rescresd. & \\
\hline 6 & Rescrved. & \\
\hline 5 & \(320 \times 20 \mathrm{y}\) color sel select & wo \\
\hline 4 & Sclect intens:thed foregrourd colons in \(320 \times 200 \mathrm{APA}\) mode. & wo \\
\hline 3 & Iutensified burder color in A/N made. luteasified bkgd color in \(320 \times 200\) APA mode. Intersified fgd color in \(640 \times 200 \mathrm{APA}\) mode. & WO \\
\hline 2 & \begin{tabular}{l}
Red border color in \(\mathrm{A} \wedge \mathrm{N}\) mode. \\
Red bkgd coler in 320 m 200 APA nowle. \\
Red fgd color in ( \(640 \times 200\) APA. mude.
\end{tabular} & wo \\
\hline 1 & Gieen border color in \(\mathrm{A} / \mathrm{N}\) mode. Gieen brgd color in \(320 \times 200 \mathrm{APA}\) made. Greea fgd color in 640x200 APA mode. & wo \\
\hline 0 & \begin{tabular}{l}
Blue berder color in \(\mathrm{A} / \mathrm{N}\) moxte. \\
Bliue biged color in 320 x 200 APA mude.
\end{tabular} & Wo \\
\hline
\end{tabular}

Bit Description
Bil \(5 \quad\) lised orily in \(320 \times 200\) graphiss mode, is usced wo seleat anl aclive sel of ectors for the seteen diz;luy.
When bil 5 is se: 101 the collors are as foilows:
\begin{tabular}{|c|c|c|}
\hline Cl & Co & Cclors \\
\hline 9 & 0 &  \\
\hline 0 & 1 & Cyan \\
\hline 1 & 0 & Mageita. \\
\hline 1 & 1 & Whire. \\
\hline
\end{tabular}

Wher bi: 5 is set io to de celors are as tilliurs
\begin{tabular}{lll}
C 1 & C 3 & Colors \\
0 & 0 & Background de:\%ned by tits 0:? al 3D9: \\
0 & 1 & Green. \\
1 & 0 & Red. \\
\(\vdots\) & 1 & Brown.
\end{tabular}

C1 ard Cla ac the high ant low order bits, respectively, of the 2 -tm pixet.

Bil4




\section*{T}
5.2.4 ATST Mode Control Register

\section*{10 address \(=3 \mathrm{DE}\)}
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7 & Beserved. & \\
\hline 6 & Underlinc color atribute enable. & wo \\
\hline 5 & Rescrved. & \\
\hline 4 & Rescrvad. & \\
\hline 3 & Alternate page select & Wo \\
\hline 2 & Alternate font select & wo \\
\hline 1 & Reserved. & \\
\hline 0 & Druble scan line mode & W0 \\
\hline
\end{tabular}

This is an 8 -bit witite-only register used to produce \(640 \times 400\) AT\&T-compatible resolution. To enable this reginter, bitof the 6845 Compalitility Control Register (CRTC Index 34) must be enabled. (Bit 6 is enabled jusil by thit 6 of CR TC 34; bir
 \(0=1\) ).
\begin{tabular}{|c|c|}
\hline Bit & Description \\
\hline Bil 6 & When setto 1 and the atributc byte \((A T T)=01\), the nemal bluc foreground color aturibut will be disather. and the white underline attibute of that character will be enabled. \\
\hline Bil 3 & Alternate page select, is used to select cither of wo 16 KB papes in mentory in be displayed. [.NOTE:: bat 0 must \(=0\) to gel 2 and page.) \\
\hline Bill 2 & Altemate fort select, is used to select one of twocharacter fonts swerd in font brecksoand l tobe displayed. The font swred in font block 0 is the default fons. \\
\hline Bit fil & When set to 1 , is a double-scar bil that simulates \(A T \& T 400\)-line graphics. When sut to 0 , simulates 1 BM 200-line graphics. \\
\hline
\end{tabular}

\section*{\(\pi\)}

\subsection*{5.2.5 Hercules Compatiblity Register}

10 adduess \(=3 \mathrm{BF}\)
\begin{tabular}{lll} 
Bit & \begin{tabular}{l} 
Description \\
Reserved
\end{tabular} \\
\(7: 2\) & \begin{tabular}{l} 
Enable second page. \\
Reservest
\end{tabular} \\
0 & Decess
\end{tabular}

The folluwing table tists the 6845 CRT controller irkenal data registers, their funcunns, and the bexadecimal values used for the illustrated modes.
Table 5.2-1 6845 Color CRT Controller Registers, Funchions, and Parameters
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{3}{|c|}{TEXT} & GRAPHICS \\
\hline & & 80 & 40 & \(320 \times 200\) \\
\hline & Fiegister & \(\times\) & \(\times\) & 4 -color \\
\hline Hegrster & Mantier & 25 & 25 & \(2 \cdot \mathrm{color}\) \\
\hline Horizonlal Total & R0 & 71 h & 38 h & 3 zr \\
\hline Horizuntal Displayed & R1 & 5 th & 28 h & 2 Bh \\
\hline Hsync Positioa & R2 & SAh & 2Dh & 2D. \\
\hline Hsyme Width & R \({ }^{3}\) & 04h & OAh & 0Ath \\
\hline Verical Tutal & k 4 & IFh & 1 F & 76\% \\
\hline Yerical Adjust & K & \(0 \cdot 6\) & (k:h & 06.6 \\
\hline Verical Displayex' & k6 & [S5 & 19 & 6 \\
\hline Vsyne Pesilion & K7 & 1 Ch & 1 CH & 70. \\
\hline [iucriace Mode & R \({ }_{\text {r }}\) & (2) & 02t & v2n \\
\hline Max, Sican Line Addr. & Ry & (b) & 03 h & 01 n \\
\hline Cursor sian & R10 & (\%h & Q & Os:1 \\
\hline Cursur Erad & Rul & 971 & 07 h & 0711 \\
\hline Starc Abluress (! \({ }^{\text {a }}\) ) & ※12 & OOH & (\%) & 00 H \\
\hline Star Alders (1.) & K13 & \(\mathrm{OHF}_{1}\) & (Xh & COH1 \\
\hline Cursor (H) & R14 & Oih & Wh & OM \\
\hline Cursor (L) & R15 & 0 O & (0) \({ }^{\text {a }}\) & 00.4 \\
\hline
\end{tabular}

\section*{T}

Table 5．2－2 6845 Monochromenthercules CRT Controller Registers，Functions and Parameters
\begin{tabular}{|c|c|c|c|}
\hline Register & Register Number & \[
\begin{aligned}
& \text { TEXT } \\
& 80 \\
& \times \\
& \mathbf{2 5}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Herculas } \\
& 720 \\
& x \\
& 348
\end{aligned}
\] \\
\hline Horizonal Total & R0 & 61\％ & 38 h \\
\hline Horizontal Displayed & R1 & 50 h & 2Dh \\
\hline Hsynce Position & R2 & 52h & 2 Eh \\
\hline Hsync Width＊ & R3 & OFh & 07 h \\
\hline Verical Total & R． 4 & 196 & 5 Bh \\
\hline Vertical Adjusi & RS & OK＇t & 02h \\
\hline Vertical Displayed & R6 & 19\％ & 57． \\
\hline Vsyme Position & R7 & 19\％ & 57h \\
\hline Interlace Mode & R．\({ }^{\text {d }}\) & 02h & 02h \\
\hline Max．Scan Line Addr． & R9 & ODh & 0311 \\
\hline Cursor Star & R10 & OBh & 6） \\
\hline Curser End & R11 & （0Ch & 00\％ \\
\hline Star Aditress（H） & R12 & （2）\({ }^{\text {a }}\) & 00n \\
\hline Start Address（L） & RI3 & 00\％ & OCh \\
\hline Cursor（1） & R14 & OOh & 00h \\
\hline Cursor（L） & R15 & OH & OOh \\
\hline
\end{tabular}
＊Bit 4，during 6845 CRTC mode operation，defines the venical synchronous output puise width as either sixteen linles wide bit 4＝0）or two laee wide（bil 4＝1）

Register descriptions for the 6845 can be found in the． regiscer description pages of Alownola and Hitachi chip
product catalogs． product catalogs

\section*{Tu}

\section*{5．3 CRTC Register Description}

The CPWinterface whe FT40MRW 32 incemal grimary CRTController（CRTC）consists of 33 retivwitercgisters Of these registers，one Register，the CRTC Index Register，is accessed by a separate independent VO addruss（ 3 * 4 ，where \(\boldsymbol{\text { f }}=\mathbf{B}\) in pronochrome emalasion modes；D in colnr emvinion riodes，as controlled by hit 0 is the Misceilaneous Outpon Register．）
 one of the 32 registers that is actually accessed selected by the CKTC Index Repister

All valucs are in hexadecimal unless otherwis：nol：ed．
Table 5．3－1 CRTC tindex Fegister
\begin{tabular}{lll}
\hline RecistelNare & & Port \\
CRTC Index Regiser & （Read／Wrik） & Address \\
\hline
\end{tabular}

Table 5．3－2 CRTC indexed Registers
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{CRIC Indexed Fegisler Name} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CRTC Indexed Address}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Por： \\
Astress
\end{tabular}} \\
\hline & & & \\
\hline Horizental Tolal & 0 & （Reathwilie） & 345 \\
\hline Horizonal Display End & 1 & （Reatwric） & 345 \\
\hline Horizontil Elagk Star & 2 & （Reatwinio） & ？\(\square_{5}\) \\
\hline Horizontal Blazk End & 3 & （Residwitic） & 界品 \\
\hline Horizontal Sync Star1 & 4 & （Resd／Write） & ？ 2 ¢ \\
\hline Horzoozal Syac End & \(\leq\) & （RCsidWate） & ？ H \\
\hline Vertical Teta： & 6 & （Readiwnte） & 湤 \\
\hline Overthew Low & 7 & （keadwrics） & \(3{ }^{3} 5\) \\
\hline Initial Row Addr（Raster Counter） & 8 & （Reationocr） & 3 3rs \\
\hline Masimuma Rout Address & 9 & （Realwhete） & 3\＃5 \\
\hline Cursen Start Row Address & A &  & 3＂5 \\
\hline Cursar Fint Row Adcress & B & （Realdicke & 3＂5 \\
\hline 1．incar Sarting Adiess Midjer & C & （Readismex & 345 \\
\hline l．incar Shatine Adiress Lex & － & （Readmene & 355 \\
\hline Curstir Adteress Mudde． & ［ & （ReadWric） & 34.5 \\
\hline Cursm Address \(1.0 w\) & F & （RcadWrice） & \(3 \ddagger 5\) \\
\hline Venital Syer Start & 10 & （Teathrice） & 3 nc 5 \\
\hline Fithial Syra Eud & ：1 & （Real \({ }^{\text {atics }}\) & \(3{ }^{\text {p }}\) ， \\
\hline Firtucat Display End & 12 & （Readitrite！ & 3 F 5 \\
\hline Risw Offect & 1.3 & （Readwrict & ． T \％ \\
\hline Crderianc Row Address & 14 & （Readwate & ifl \\
\hline Verical Elenk Start & 1.5 & （Read，Wraei & 3 H 5 \\
\hline Vertical blenk Find & 16 & （Readwisite） & 3H5 \\
\hline CRJC Moxte & 17 & （Readwrice） & 3＊5 \\
\hline Split Sor Star：Low（Line Compare） & 18 & （Resulwric； & 3\％\({ }^{\text {S }}\) \\
\hline RASCAS Cenfupurse & 32 & （Reativiritc； & 2\％\({ }^{\text {\％}}\) \\
\hline Fxateded Stan Address & 3.3 & （Reat／wntc） & วп¢ \\
\hline 6845 Comparitily Control & 34 & （Readminte） & ？\({ }^{\text {a }}\) \\
\hline Overlow Higil & 35 & （Readfuric） & 3म5 \\
\hline Videe System config．rrstion ！ & ？\({ }_{7}\) & （Readmsix） & \(3+5\) \\
\hline Yider Syscma configuration 2 & 37 & （RCadNsite） & 3tts \\
\hline Herizantal Owerfow & \％ & （Read／sisitr） & \(3{ }^{4} 5\) \\
\hline
\end{tabular}


 \(\qquad\) ．．． \(\qquad\)

Many of the CRTC values, such as the Linear Slarting Address and the Vervical Sync Stark, are broken up into numerous non-adjacens registers. This is because of the need to maintain IBM VGA and EOA compatibility, For example, vertical sync start bits \(7: 0\) are in Register 10 her, Vertical Sync Start Bits \(9: 8\) are in Register \(7+\) Oyerfow Low. These two registers provide the 10 -bil vertical sync start value in IBM's VGA. The ET \(4000 /\) w/32chip supports 11 -bil verical valucs, 50 Register 35 hex, Overflow High, contains bit 10 of the vertical syne statt value. Although this can sometimes be awkwiard, it is th only way to provide both IBM VGA and EGA compatibility and the extended functionality of the ETAOOONW 32 chrp.

Because there are so many ET4000/W 32 registers and because many CRTC values are spread over numerous registers, the fotlowing table lists many of the registers artanged according in general function.

Tii
Table 5.3-3 CRTC Reyisters By Function
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{13}{*}{एгіmary Eunction Horizonal timings} & Sub & CRTC & Indexedregister \\
\hline & Eunetion & Index & Name \\
\hline & Scart line & 0 & Horivontal Toual (bit 7:0) \\
\hline & lengit & 3 F & Horizontal Querflow (bit \% \(^{\text {c }}\) \\
\hline & Display & 1 * & Itmizomial Display End (bin 7:0) \\
\hline & crable & † & 1 lenizontal Blank End fait 6:5) (IAorizontal Display Fualle Skew; \\
\hline & Hlank ing. & 2 & Ho: ianntas Hlark Starr (bur 7:0) \\
\hline &  & \(3{ }^{-}\) & Horizontal Overflow (his 8) \\
\hline & & 3 & Horizentul Blank Fid (Hige bit 0:4) \\
\hline & & 5 & Horizontal S Yuc Find (HBE bit 5) \\
\hline & Syba & 4 & Honzentie Syrue Sua (bia 7:0) \\
\hline & & 3 F & Horzonkil Overflow (til 8 ) \\
\hline & & 5 &  \\
\hline \multirow[t]{15}{*}{Yertial tining:} & F-ame & 6 & Verlical Tota, (bit 3 W) \\
\hline & heichin & 7 & Overllow Low (VT b. 8.9 ) \\
\hline & & 3.5 & Overflow High (VT bic 1c) \\
\hline & Displey & 12 & Vertical Disptay Ent (bus 7:c\% \\
\hline & enatio & 7 & Overflow Low (VDT: bit 8,9] \\
\hline & & 35 &  \\
\hline & Blanking & 19 & Verical Blank Starl (biil 7:0) \\
\hline & & 7 & Overflow Lew (Vrst hat \\
\hline & & 4 & Maxısum Row Address (VBS bit 4) \\
\hline & & 3.5 & Decriow Higs ivbs tit 10) \\
\hline & & If & Veracal Blark Fond (tiof:C) \\
\hline & \(\mathrm{Symu}^{\text {¢ }}\) & 10 & verical Syne Stare (bit 7:0) \\
\hline & & , & Overlow .ow (vSS bil 8,4 ) \\
\hline & & 35 & Owallow High (VSS bil ley \\
\hline & & 1 : & verucal Syme Fand thit 3:0! \\
\hline \multirow[t]{6}{*}{Cursur} & Athass & F & Cursen Address Low (nat 7:0) \\
\hline & & E & Cursior Address Midile (bu 15:8) \\
\hline & & 33 & Exterded Sime Addrese (CUUA bil ly:let \\
\hline & Row Aluters & A & Cursor Starl Row Atdress (til 4 \%) \\
\hline & & B & Cursor Stop Row Address (bel 4:'ti) \\
\hline & Skew & B & Cursur Stop Row Address (but 6.5) \\
\hline \multirow[t]{5}{*}{Mc:anry address} & \multirow[t]{3}{*}{Luncar addecss} & D & L_near Stars Addr Low (bil \(7: 0\) ) \\
\hline & & \(\bigcirc\) & L.inear S Lam Addr Mrdile (bir 15:5) \\
\hline & & 31 & Exxended Start Address (Lat hit \(10: 16\) ) \\
\hline & \multirow[t]{2}{*}{Row oflet} & 13 & Row Chlsel (bit 7et) \\
\hline & & 31 : & Ruw Oftel (bit b) \\
\hline \multirow[t]{4}{*}{Splis wiex} & \multirow[t]{4}{*}{Sture scar: LuIIC} & 9 &  \\
\hline & & 18 & Live Cormpare (lis: 70) \\
\hline & & 7 & Overfluv: Latu (Sanc Coitukte hit k ) \\
\hline & & 3.5 & Oreffiow Hith flme Cuankue bil 10 ! \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline
\end{tabular}


\subsection*{5.3.2 CRTC Indexed Reglsters}

The following registers are CRYC insexed registers. These registernare atocssed by fust witiag the index of fie fesired register w the CRTC Indcx register and then accessing the register using the adidess 3n.9.

\section*{T T}

5,3.3 CRTC Indexed .eegister O: Horizontal Total
1/O address = 3H5

Bit
Description
Toual characker times per horizoncal scan line ( -5 VGA, -2 for EGA mode)

Access

Bit

\section*{Description}

Hi1 7:0


\subsection*{5.3.4 CRTC indexed Fegister 1: Horizontal Dlsplay End} :10 address = 3\#5
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 0\) & Characcer count of hurizortal & RW \\
& display cnable cnt -1.
\end{tabular}

Character count of hurizortei display cnable cné - 1 .

Description
The Horizonal Disp:ay Find rejister centains the \(S\) bit value of the mber:al hor:zomal charscle: counter after which the borizonal display enable Feriod is to end The tolat nusimer of characters


5.3.5 CRTC Indexed Register 2: Horizontal Blank Start 1/O dduccs - 345
\begin{tabular}{|c|c|c|}
\hline Eit & Descriplion & Access \\
\hline 70 & Chasacler count of horizomial blankir: stan. & RW' \\
\hline Bit & Description & \\
\hline В 70 & The Horizor:al Blank Start &  \\
\hline
\end{tabular}

\section*{\(T\) \\ 5.3.6 CRTC Indexed Register 3: Horizontal Blank End \\ I/O address \(=3 * 5\)}
\begin{tabular}{lll} 
Bit & Description & Access \\
7 & Test biL & RW \\
6:5 & Display cnable skew. & RW \\
\(4: 0\) & Character count of horizontal blankiag end RW & \\
& modulo 32 (EGA); 5 leasl significarn bis of & \\
& character count of horizuntal blanking end & \\
& modulo 64 (VGA mode). &
\end{tabular}

\section*{Bit Descriptian}

Bit \(7 \quad 1=\) nomal mock of operation
Bits 6:5 These bios firm a 2-bil jnegee that deflines the skew of the merizental display enable :n characlet ctocks as follows.

Bit
\begin{tabular}{lll} 
Bit & & \\
E & \(\mathbf{5}\) & Skew \\
0 & 0 & 0 characke cloks. \\
0 & 1 & 1 character clock. \\
1 & 0 & 2 character elocks.
\end{tabular}

EGA mode: Provides the 5-bil value of the internal horizuntat character couster at which horizonal blatiking is te end. Since the character counter is an 8-bit counter and we Horizontal Biank End is a 5-bir regisser, the upper 3 bits of the character counce are iguored an naking his comparisen. This neans fist 5 bils of the characier oo 5 bits of the character counter, horizontal blanking witl end

VGA mode: The Horizor:al Blank End register vahe is increased to six bibl: the five bils utal provide the least signifkant five bils of this value, while the mastsignificant bit is found in Cer TC medexed Register 5 (Horizortal Syne End register) b. 7 .

\subsection*{5.3.7 CRTC Indexed Register 4: Horizontal Sync Start \\ 1/O address \(=3 \mathrm{H} 5\)}
\begin{tabular}{lll} 
Bit & Description & Access \\
70 & Character count of horizontal sync start. & RW
\end{tabular}

\section*{T}
5.3.8 CRTC Indexed Regisier 5: Horizontal Sync End

L/O address = 3:45
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Acces \\
\hline 7 & Bil 5 of Horizonal Blank End for VG.A niodes. & RW \\
\hline f:S & Hisizontal syne skew. & RW \\
\hline 4:0 & Ctaracter count of horizuntal sync end & RW \\
\hline
\end{tabular}
module 32.
Eit Description

Bit \(7 \quad\) Povides bis 5 of the Horizontal Blark tand vaiuc fir VGA moves
Bis 6:5 as foilows
\begin{tabular}{lll} 
Bit & & \\
6 & 5 & Skew \\
0 & 0 & Ocbaacler clocks. \\
0 & 1 & I characler clock. \\
1 & 1 & 2 character clocks. \\
1 & 1 & 3 character clocks.
\end{tabular}




 counter, horizontaf sync will end.

\subsection*{5.3.9 CATC Indexed Register 6: Vertical Total}

1/O address = 3nt
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline \multirow[t]{2}{*}{7:0} & WiA mode: Horzeortal scan lines per venica: frame - 2 (bits \(7: 0\) ). & k\% \\
\hline & EGiA Mude: Horizontal scan inees per verical frame 1 (bics 7:0). & RW \\
\hline Bit & Description & \\
\hline \multirow[t]{2}{*}{Bits 7:0} & \multicolumn{2}{|l|}{ tefancy tice number of hormontal scan lifes per verical frame.} \\
\hline & Nore that tits \(9: 8\) of the vertizal natil value me Overflow Hagh regremer. & Oycrifew Low regisker. nad bia lif) is in the \\
\hline
\end{tabular}

\section*{.3.10 CRTC Indexed Register 7: Overflow Low} \(1 / \mathrm{O}\) address \(=345\)
\begin{tabular}{|c|c|c|}
\hline Bil & Description & Access \\
\hline 7 & Vertical Sync Start (bit 9). & RW \\
\hline 6 & Vertical Display Enalle End (bit 9). & RW \\
\hline 5 & Veruical Toul (bit 9). & RW \\
\hline 4 & Line Compare (Sptit Screen) (bit 8). & RW \\
\hline 3 & Vertical Blank Start (hit 8). & RW \\
\hline 2 & Verical Sync Start (bit 8). & RW \\
\hline 1 & Verical Display Enable End (bil B). & RW \\
\hline 0 & Verical Toial (bil 8 ). & RW \\
\hline Git & \multicolumn{2}{|l|}{Descriplion} \\
\hline Bits 7:0 & \multicolumn{2}{|l|}{The Over Пow registet contains one extra bit for eath of five values that cannol fit in a singte byte. Bits \(9: 8\) of the Verical Total. Vertical Display Ensble End, and Vertical Sync Siart are conlaned in} \\
\hline
\end{tabular} Bis 9.8 of be Verical Total. Vertical Display Enable End, and Vertical Sync Siant are conlaned in the Overflow Jegister, as is bit 8 for Verlical Btank S:arl and Line Compare.

\subsection*{5.3.11 CRTC Indexed Register 8: Preset Row Scanidnitial Row Address}
\(1 / 0\) address \(=3 * 5\)
\begin{tabular}{lll} 
Bil & Description & Access \\
7 & Rescrued. & \\
\(6: 5\) & Byte Panninc. & RW \\
\(4: 0\) & Jnitiall rove address after ventcal sym:. & KW
\end{tabular}

To access this register in 6845 compatimity riode, use CRTC: ladexed Regisse 35 for the regisie: adisess (instead of CRTC lidexed Rep:ster \%)

Eit
Description
Define he row address of the frest sata line following verucal syoc.


\section*{花}

5,3.12 CRTC Indexed Fegister 9: Maximum Row Addres
10) address = 3\#5
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7 & Duuble Scan Enable: 200-to-400 scan line conversion. & \\
\hline 6 & 1.ine Compare (Split Screen) dring. & RW \\
\hline 5 & Yettical Blank Siart bu 9 & RW \\
\hline 4:0 & Number of stan lines per character row -1. & RW \\
\hline Bit & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
When set to 1 , sels sean lines in 400 fromit 200 . This divides the clock in the row scan counter by 2 , effectively doubling the dines displayed by dusplaying e.very finc cwice.
\end{tabular}}} \\
\hline Bil 7 & & \\
\hline \multicolumn{3}{|r|}{Whew sel to f, relurns the row seat ceunter clock equal to the horizonial san rath} \\
\hline Bit6 & \multicolumn{2}{|l|}{Bit 9 of the Line Compare (Spitit Sereen) register.} \\
\hline * Bit 5 & \multicolumn{2}{|l|}{Bi: 9 or the verical blanix register.} \\
\hline Bis 40 & These bise detare the letightin in scan lines of lize form the fon therazerer beng displayed & arater row. Th is usat to seleci the desirad sean \\
\hline
\end{tabular}
5.3.13 CRTC Indexed Register A: Cursor Start Row Address \(1, \%\) address \(=3 \mathrm{ks}\)
\begin{tabular}{|c|c|c|}
\hline Bit & Oescription & Access \\
\hline 7 & Rescres. & \\
\hline 6 & kescreed. & \\
\hline 5 &  & KW \\
\hline 4:\% & The sow eddecss al whith: dle: cursor: starts beil:g anablyed. & RW \\
\hline Bit & \multicolumn{2}{|l|}{Description} \\
\hline His 5 & \multicolumn{2}{|l|}{When sel in !. utrms the cursor ollf.} \\
\hline & \multicolumn{2}{|l|}{When set mi D, turns the cursum 0 on.} \\
\hline Bits 4 : \({ }^{\text {a }}\) & These bi:s corian the valle of der impernis erraticd. & Ss colur.ce \\
\hline
\end{tabular}

\section*{Ti4}

\subsection*{5.3.14 CRTC Indexed Register B; Cursor End Row Addres}

I/O address \(=3 \# 5\)
\begin{tabular}{lll} 
Bit & Description & Access \\
7 & Rescrved. & \\
\(6: 5\) & Cusor skew. & RW \\
\(4: 0\) & The row address at which the cursor stops & RW \\
& being enabled. &
\end{tabular}

\section*{Bit}

\section*{Description}

These bits contain the row address at which the cursor is to stopl being enabled. That is, Curser End Rup Address register \(=\) last cursor row address displayed +1

Biss 6:5 These bits form a 2-bit integer that defines ahe skew of the cursor signat is charatace elocks as follows:
\begin{tabular}{lll} 
Bit & & \\
\(\mathbf{6}\) & 5 & Skew \\
0 & 0 & Ucharacter clocks. \\
0 & 1 & 1 character clock. \\
1 & 0 & 2 characler clocks. \\
1 & 1 & 3 character clocks.
\end{tabular}

In generai, the cursor location musi maincain a relationstip wath the display enatle signai such that a curser poscit:coned a both the extreme lefi and extreme right of the sireen will always appear

\subsection*{5.3.15 CRTC Indexed Register C: Linear Starting Address Middle \\ \(1 / 0\) address \(=3 * 5\)}
\begin{tabular}{lll} 
Blt & Description & Access \\
\(7: 0\) & Linear startirg address \((<t s: b>)\) & \(R W\)
\end{tabular}

\section*{Bit}

Bits 7:0

\section*{Description}

This register contains bils \(15: 8\) of the 20 -bit linear staning atdress. The linear starting alderss is die: display mernory address at which the regen buffer (the area ur memory scanncd by the finear counter for video data) begins; the linear counter is sectothis value at the start of the vertical frame. The linear startme address can be incremented or decremented to perfiom horizontal charazter paning: the ATC: horizontal pixel panning feature cati be used for finer horizontal paaning. In graptices rnedes, the lines: sarting address can be incremeruled or decremented by the value of the Row Orfset register to perforn smooth (scan line) verical serolling. In text modes, the linear stanting address can be used to perform tharacter vertical scrollong: in this case, the initial Row Address register can be used to adjust, on a scan line hasis, to smooth- seroll the tex

Noc that bis 1s:160t the linear startung address are in lee Extended Start Adidecs regtser and has 7:0 are in the I_inear Scartimg Address I_ow register

\section*{\(T\)}
5.3.16 CATC Indexed Register D: Linear Starting Address Low
\(1 / 0\) address \(=\) ant 5
\begin{tabular}{|c|c|c|}
\hline Bit
\(7: 0\) & \begin{tabular}{l}
Description \\
Linear starting adjress (<?:0s).
\end{tabular} & \begin{tabular}{l}
Access \\
KW
\end{tabular} \\
\hline Bit & Descriplion & \\
\hline Bits 7:0 & This register contairs bits 7:0 of Address Middle registe, for detals & ing add \\
\hline
\end{tabular}
5.3.17 CRTC Indexed Register E: Cursor Address Middlle 1,O address \(=\) ? \({ }^{4} 5\)

\section*{Description}

Cursur 5 tiol aderess (c.15:8.3).

\section*{Descriplion}
 address at which the cursor is localed in can enode.
 the Fixlended Stan Address. Register (Sec Secaton 5.j.abi.

\subsection*{5.3.18 CRTC Indexed Register F: Cursor Address Low}



\section*{7通}
5.3.19 CRTC Indexed Pegister 10: Vertical Sync Start

100 andress \(=3 \# 5\)
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 0\) & Scan line at which vertical sync starts. & \(R W\)
\end{tabular}
\(\begin{array}{ll}\text { Bit } & \text { Description } \\ \text { Bits } 7: 0 & \text { This registcr contains the lower eight biss of the } 11 \text {-bit vertical sync start value. The verical syne slin } \\ & \text { value spectics the value of the internal line counter at which vertical sync (the vertical rctrace pulsc) }\end{array}\) valut spectifics the value of the intermal line counter at which verical syne (the vertical retrace pulse)
is to start. is to start.

Noce that bits \(9: 8\) of the vertical sync start value are in the Overflow Low register, and bit 10 is in the Ovefflow ligh register.

\subsection*{5.3.20 CATC Indexed Register 11: Vertical Sync End}

1/O address = 3\#5
\begin{tabular}{lll} 
Bit & Description & Access \\
7 & Protection bit & RW \\
6 & Rescrved. & \\
5 & Enabie vertical interrupt when lovi & RW \\
4 & Clear ventical intempt when lowi. & RW \\
(t-3.3 & Scan linc at which verical sync ends & RW \\
& modulo I6. &
\end{tabular}
Bit Description

Bit \(7 \quad\) When ses to 1 , prevents CRTC registers \(0-7\) and 35 , frora beige writen to, wist the excepliun uf hil 4 of the Overtlow tegisler (CRTC. Regisces 7 ) and bils 4,7 of CRTC Indcxed Regisien 35

\section*{Description}

Thus registes specilies the antou:t to te added te the indernal linesr couster wher advancing from orie screen row to the rext. Die atd.tion is performed whene wer the in:cmial row iddress ewanter advaluce




 80 is the nember of bytes per scan tine. If the CRTC Mate register is set to select word mode, then the Row Offet register is progranacd with a doblekword, rather than a word. walue. For instance, in 80
 side, eacle claracter reyuires 2 linear bytes (characterade bytc ard auribute byte), for a total of \(160(\mathrm{~A} 0\) hex) byles per row.

Tu effect, the Ruw Dffel regiser derines a virtial screen w:dth. so that the physieal screen area condd th cersidered a window orice a vartual screen that has a width defaned by the Row Offset regrace. Thi horizonlal pixelparning festure of the A] C tar the ased with the fintear star address to nove horeombaldy



\subsection*{5.3.23 CRTC Indexed Register 14: Underline Row Address \\ O address \(=3 \# 5\)}
\begin{tabular}{lll} 
Bit & Description & Access \\
7 & Restrved \((=0)\). & \\
6 & Doubleword addressing. & RW \\
5 & Lirtear address count by 4. & RW \\
4:0 & Row addres5 at which underline signal is & RW \\
& oo be assered
\end{tabular}

\section*{Description}

Bit 6
When sel to I, indicates that memory addresses beirig used are deubleword addresses.
When sel to l, clocks the mentiory address counter widh the characher clock tivided by 4 , used when doubleword addressing is used. NOTE: When bil 3of the CRTC Mote Register also- 1, whe Invear councio will increment twice per charaater.

These bits contain the value of the mow address councer at whach the underline is whe enalled. The ATC enables underline atribute decoding and displays the underline whencyer the underline altribute is une during that scan line. The underline nlay be disabled by seting the Underline ROw Address regiscer in a value egeater than the setting off the Maxitaurn Row Address register. The value sel is ecual he the sean line number requested minus one.

\subsection*{5.3.24 CRTC Indexed Register 15: Verlical Blank Start}

1/O address \(=3 \#\)
begins \(\cdot 1\).

\section*{Description}

This regisker cortains bits 7:0 of the II-bil Verical Elank Slarl value. The Vertical Blazk Start speeific the value of the interal line counter at which vertical blanking is co slain -1 .

Note that bit 8 of the Vertical Blank Start value is in the Overflow Low register, and lit 9 of the vertical Blank Stan value is in the Maximum Row Address regiscer, while bat to is in the Overtlow Hugh reg:stre

\subsection*{5.3.25 CRTC Indexed Register 16: Vertical Blank End}

\section*{1/O addres. \(=3\). 4 S}

Descriptian
\(\begin{array}{ll}\text { Oescription } & \text { Access } \\ \text { Siar line at whicl vertical blanking ends. } & \text { RW }\end{array}\)
7:0

Bit
Bis \(7: 0\)

\section*{Description}

Acces

This register contain the 8 -bil value of the in. iemal line coenter at which verical hanking is to end. Suc Une life counter is an 31 -bit counter and the Verical Biath Foud is a 8 -bit regisser. the upper thee bits of the line counder ara ignored in making dis comparison, This means chat the verical blatikitigend position is detined relative to the Verlical Blanking Slart position: the first time after the startal ventical thankit that lie Vertica: Blink End register onacches the lower 8 Etes (In EGA mote grily this 4.0 are usex in the comiparison) of the lene coutriter, vertizal blanking will erd

\subsection*{5.3.26 CRTC Indexed Register 17: CRTC Mode}
(4) address = 345
Description Access

Holld cumbrol.
Rw
Worloy by mexte st:cil.
Regerved.
a.

Alterrale aldises line l.Al? cutput.

Description

When set to 0, sclects ward arudi:




 ty fically used in text mone.

The reasoa für selecting thes alernate value for LAOC is so that the CRTC display memory mappux
 Mode regeser) is active to allow CPU memory addressng, to matel the CRTC organizaton of display
 7 and 3 starian the sofl character forls.

The CRTC





16 KB per ptane is installed, bit \(\$\) should be set to 0 wo wrap linear address bit 13 no LA00, providing the CRTC with 16 KB addressing. When more than 16 KB of memary per plane is instriled, hit 5 should be ses \(\omega 1\) to wrap linear address bit 15 to LA00, providing the CRTC with 64 KB of addressing.

Externally, the CPU address line \(\mathrm{A}<14>\) or \(\mathrm{A}<16>\) or a page selert bit, should correspond to the \(\mathrm{L}, \mathrm{A} 09\) une in even/odd mode. in non-even/odd mode, the CPU address line Aclos should conespond to the LAOK tine.

When set to \(I\), causes the tinear counter wincrement on cyery other character cloxk, rather than incrementing on every character clack.

When selt to 0 , the linear counter is incremented on every characterclock. Thes is lypizally associated with situations where DOOTCLK is not divided by twin bay VLOAD is diviled by wo and word mode addressing is selected; the linear counting is divided by two to synchennixe the linear coumters with the ATC video data rate. If VLOAD and DOTCL \(K\) are buthdivited by two, then hit 3 stwuld not be sel to 7. NOIE: When this bil \(=1\) and bit 5 of the Woderline Ruw Address Register also \(=1\), then IJe linear reunter will ircrement twice per character.

When set to 1 , causes the line counder to ion tement on every other scaia line, ratler than incrementing on every scan tire. Thishasthe effect of doublingall ycrical tim:ngs withour affecting any horizortal timangs

Whert set 100 , the line counter incernems with every scan lanc.
Bit I Frovides an altemate vai.ue for I.A 14 ou:putdining the dirplay eabable period; that is, the dupplay menter address line LA14 is multiplexed

When bit 1 is sel to 1 , Inean connter bit i4 or bit 13 , in byte or woid mode, respectively, is nulaplexec 10 LA14


 addeess line, LA:3. is mult:plexed.
 of Lats.
 KKB after the corresponding even scan line Tlis:s used wemulate the 6845 CRT Controlter used in th IBM Color/Graphiss Adupter.

\subsection*{5.3.27 CRTC Indexed Reglster 18: Lifte Compare (Split Screen)} 10 address \(=3 * 5\)

\section*{Descripilon Line Comparc}

\section*{Atcess}

\section*{Descripilon}

Bits 7:0
This register contains bits 7:0 of the compare target. The line compare targer value specifies the value of the internal tine counter at which the internal linear counter is to be resect to 0 . This means that at the scar bine after the scan line specified by the line compare terget value the display will reflect the comests of display memory starting al address 0 . This split screen section will continue to the botwom of the screcn and will remain unchanged even if the linear starting address is changet.

Note that bit 8 of the line compare value iscontained in the Overflow Lowregister, bit 9 is in the Maximut Row Address register. while bit 10 is in the Overfow High register.

The following CRTC registers are TLI'sextended rezisters. To write to these registes(s) (except indices 33 and 35) the "KFY" must be set (CRTC Indexed Regisle 35 is protected by bit 7 of CRTC: 11.) Sc. Scction 5.12, Inpu1 Status Register Zero for definition of "KEY".

\subsection*{5.3.28 CRTC Indexed Register 30: System Segment Map Comparator}

\section*{10 address \(=3 * 15\)}
Description
Reserved.
Addressing mote: Access
Description

These bits are compared wo bost's upper address bus or docode and are used to select the video niener segments within the system metnory map. The default value on power-tif for bits \(4: 3\) is
\[
\begin{array}{r}
\text { Bib } \\
\angle 3210 \\
\hline 11100
\end{array}
\]

ISA bus bics 1:0 congare to inputs SEGE and A<22>, respectively, If System Lincar Alode is disahtect this comparison is ANDed with inputs \(A<21>\) and \(A<20>\), which must be low. If Systern Lincan Moklc is enabled, A<21> and A<20s are address inputs. Bits \(4: 2\) are always ignored.
MCA bus bits 2:0 compare to inputs MADE \(24, A<23>\) and \(A<22>\). respectively. If System Linear Mod is disabbled, chis comparison is ANDed with inputs \(A<21>\) and \(A<20 s\), which mustbe low. If Syslem Lincar Mode is enabied, A<21> and A<20> are address inputs. Bits \(4: 3\) are always ignored.

Local Bus bits \(5: 0\) compare to inputs SEG2. SEG1, SEG0, A \(23>\), and A \(42>\), respectively. If System Linear Mode is disabied, this comparison is ANDed with inputs \(A<21>\) and \(A<20>\), which nuss be low: If \(S y s t e n\) Linear Mode is cnabled, \(A<21>\) and \(A<20<\) are address inpucs.

When the Image Fort is emabled, A<22:20. are ignores (sec Section 5s. IMA Register [Rebcriplions, ar: 3.8, amage Forn merface, Consequerty, maximum systern linear space as 1 MmF .

\subsection*{5.3.29 CRTC Indexed Reglster 31: General Purpose IO address \(=3 * 5\) \\ 4 ii}
\begin{tabular}{lll} 
Bif & Descripition & Access \\
7 & Clock Select 4. & RW \\
6 & Clock Select 3. & RW \\
5:4 & Reserved. & \\
3:0 & General purpose & RW
\end{tabular}

\section*{Bit}

\section*{Descripilon}

These bits are provided to the programmer as a general storage bocation, An example of its use would be to mamuin configuration information about the video system.

Bis 6:7
The values in these bits are driven out on the CS《4> and CS \(<3>\) pins (see Section 3.4). Clock Sclect bit 2 is in the CRTC Indexed Regisier 34, bit 6 , and Clock Select bits < \(<1\) : ( ) are in Miscellaneous Output Regista, biss \(<3: 2\rangle\). These five ciock select lines provide selection of up to 32 differtent video clock frequencies.
5.3.30 CRTC Indexed Register 32: RASICAS Configuration (RCCONF; protected by key) 1/O address \(=3 \# 5\)
\(\ddot{i}\)

Eit
\({ }_{7}\)

Bit Description
 Hill te addect to the RAS low pulse width and to the last CAS low pulse widen of cach RAS cycle. Thi
 will efectively inirease the column address hold ume by one dillity.
RAS pre-charge lime will te reduced by one SCLK cleck perions.
 number of CAS cyale
2. The RAS high pulse widd is enfed to Jesp. Tra:
 is recuces to 2 sc.LK periods
 width thegh es equal of the programmed value plus 2 of Sct. K chock perioul



Bl도 1 :(t)
 prutse with tatie is SCLK periads is decemined by tre foilowite tate:
cntc 32
\begin{tabular}{|c|c|c|c|}
\hline & Graphtics & Text & \\
\hline Mode & CASc3:0\% & CASc3.2) & CAS \(<10>\) \\
\hline CSW & CAS Low & CAS Low & CAS low \\
\hline 5102 & Fulse Wdy & Pulse Widith & Euser Wideh \\
\hline 00 & 1 & 1 & 1 \\
\hline 01 & 2 & 2 & 2 \\
\hline 10 & 1 & 3 & 1 \\
\hline 11 & 1 & 4 & 1 \\
\hline
\end{tabular}

\subsection*{5.3.31 CRTC Indexed Register 33: Extended Start Address}

\section*{IN address = 3 3}
\[
\because
\]


\subsection*{5.3.32 CRTC Indexed Register 34: 6845 Compatibidity Control Fegister (protected by key \(1 / 0\) address \(=345\)}
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7 & 6845 l=erable 6845 compalibitity. & Kw \\
\hline 6 & ENEA I=erable double stan/underline in AT\&T compatble mode. & RW \\
\hline 5 & ENXI I=enable tratstation ROM when writing CRTCMMSCOLT. & RW \\
\hline 4 & ENXR \(1=\) enable transiation ROM when jeading CRTCMLSCOUT. & RW \\
\hline 3 & ENVS VSF register por address ( \(1=46 \mathrm{~F}, 8,0=3 \mathrm{C} 3\) ). & RW \\
\hline 2 & TRIS 1=[ri-state due ET4000/W32's oulpul tri-slate pins. & RW \\
\hline 1 & CS2 MCLK clock select \(2 *\) & RW \\
\hline 0 & EMCK e enable translation of CSO bit. & RW \\
\hline
\end{tabular}

\section*{Bit Description}

When set io 1 , enables 6845 compalibility. Sevcral steps necat to be caken in order to prograritura 686 s compatibility. The ETAOCONW32 internal registers should be programuret as follows in onder co fully emulate the JBM CGAMDA or fercules modes
A. Load the font and set the extemal palete appropriately for the mode to be selected
1. color: set 200-scan linte mixde 3 firsl tol luad tont.
sctextemal paletic.
2. mono: set 350 -scar Itre mode 7 lirst w Joad font set extemal palcitc.
B. Sct the appropriace EGA/VGA table for the corter mode (Sec Tatile s.i. 5i. *
C. Set bil 7 of the CRTC Indexed Register 34 fur CGAMMDAHflercuies compatibulity.**
D. Set the appropriate Disp'ay Mode Control register (3\#B),
 Hercules). (In color mede, also set the color register (3Dy).)

Note that the values programmed into the Misceliancous Output Register and is Indexed Register (retating to the clock and symi polarities) can vary depending on the anapier's clock ceniggraiont. whether or not translation is erabled, and the target monitor. The ROM configuration also affects TS Indexed Register 7.
 for double scan)
may also need to be set depending on che saget monitor and wheles or mot (fanslatoon is erabled
 colos compaibility.

When set to I, enables the deubte sean and underline color anditules. (Sec Section 5.2.4, AT \& T Mouke Control Register.)
(Hit 5 for writc, bit 4 for read) when sel to 1 , disabie the RDMEL outpul whec. ar. I/O read/urix in the CRTC Data register 3\#5 or MISCOUT reg.ster is performed. This allows the external lratulation ROM to the enabled for the CRTC register. Ta use the translation, extercal ROA1 mLsit be inconporated. When set to 0 , the Transiation Morte is cisahted

When set tn 1 (Oupput cri-stare coniral), causes all oufput pins to go to a tri-state condrien. The syublods


 combination widh CRTC indexed Regista 31<7:fos. provides up to 32 viden elocks to be setweced. See CRTC intexed Register al for more intormation regardiag elock selecas
 Secion S.I.]. Miscellanceus Oulput Repister j Also, during ENXL sel to 1, l:MCK is uned u sellew the

\begin{tabular}{llll} 
Regisler & & \multicolumn{3}{c}{ Mode of Operation } \\
Nlame & Port & Index & CGA \\
Misc. Oulput & \(3 C 2\) & - & 37 \\
AA
\end{tabular}

\section*{Timing Sequencer}
\begin{tabular}{|c|c|c|c|c|}
\hline Aegister & & \multicolumn{3}{|l|}{Mode of Operation} \\
\hline Name & Port & Index & CGA & MDA \\
\hline TS hadex & 3 C 4 & - & & \\
\hline Sytuch Resel & \(3 \mathrm{C5}\) & 00 & 03 & 03 \\
\hline TS Modk & 3 CS & 01 & 00 & 00 \\
\hline Wrie Planc Misk & 3 C 5 & 02 & 03 & 03 \\
\hline Font Selcet & 3 C 5 & 03 & 09 & 00 \\
\hline Memory Mode & \(3 \mathrm{C5}\) & 04 & 02 & 02 \\
\hline Reserved & 3 CS & 05 & & \\
\hline State Control & \(3 \mathrm{C5}\) & 06 & 00 & 00 \\
\hline TS Aux Mode & 3 CS & 07 & 48 & 48 \\
\hline
\end{tabular}

CRT Cantcolter Regisiers
CRT Contcolter Regisiers
Negister
Nante index
CRTC index
Horiz Tot
Hiar Bis End
Hor Blak Sor
Hor Blak End
Hor Syme Sut
Hor Syact End
Veri Tot
Overfow Low
Max Row Ader
M3x Row
Cursor Str
Cursor En:
Lia Sur Mid
Lin Sut Law
Cursur Mid
Cursur low
\(v_{r}\) Synes sut
\(V_{r l}\) Sylis End
Vrt Dis End Row Offset Row Offset
Underlone Row
Vre Bink Sur
Vre Binx End
Crt Blax End
Cine Compare
line Compara
Overflow 13
\begin{tabular}{|c|c|}
\hline Bort & Inc \\
\hline 3D4 & - \\
\hline 3D5 & -00 \\
\hline 3D5 & \(0]\) \\
\hline \(3 \mathrm{DS}_{5}\) & 0.1 \\
\hline 3D5 & 0.3 \\
\hline 3 D 5 & 94 \\
\hline 3 DS & 05 \\
\hline 305 & 06 \\
\hline 3DS & 67 \\
\hline 3 D 5 & 68 \\
\hline 3D5 & 09 \\
\hline 305 & CA \\
\hline 3D5 & 03 \\
\hline 305 & 0 \\
\hline 3 DS & 0. \\
\hline 3 DS & OF \\
\hline 3 DS & OF \\
\hline 3 S & 10 \\
\hline 30.5 & \(1]\) \\
\hline 305 & 12 \\
\hline 305 & 17 \\
\hline 305 & 14 \\
\hline 30.5 & 15 \\
\hline 305 & 16 \\
\hline 305 & 17 \\
\hline 3 DS & 18 \\
\hline 3 DS & 35 \\
\hline 3 DJ & 35 \\
\hline
\end{tabular}

Mode of Operation CGA MDA

\section*{\(50 \quad 5\)}

50
00
\begin{tabular}{ll}
0 & 00 \\
0 & 00 \\
\hline
\end{tabular}
00

0 00
00
00
00
00
\(\begin{array}{ll}\infty & \infty \\ \cdots & \infty \\ \infty\end{array}\)
\(\begin{array}{ll}00 & 00 \\ 00 & 00\end{array}\)
\(\begin{array}{ll}10 & 0 \\ 0\end{array}\)
00 o
IF
\(00)(6\)
00 (
\(\begin{array}{ll}\mathrm{AD} & \mathrm{A} 0 \\ \mathrm{FF} & \mathrm{T}\end{array}\)

GDC Registers
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Register
Najame} & \multirow[b]{2}{*}{Piry} & \multirow[b]{2}{*}{fodex} & \multicolumn{2}{|l|}{Mode of Dperation} \\
\hline & & & CGA & MDA \\
\hline Gibe Incex & 3 CL & & & \\
\hline SatResel & 1 Cr & 09 & 00 & (\%) \\
\hline Fantil Sclkes & 3 F & 01 & 00 & ( 0 \\
\hline Colr Compare & 3 CF & 02 & 00 & to \\
\hline Dita Rocale & 3 Ci & 03 & 00 & 0) \\
\hline Read Flanc Sct & 3 CF & 04 & (10) & 0 \\
\hline GIDC Mute. & 3CF & (i) & 10 & 10 \\
\hline Maxcellarmous & 3 CF & 06 & OF: & CA \\
\hline Colur Care & 3 CF & (1) & 00 & \(\cdots\) \\
\hline Bul Mask & 3 CF & 08 & FF & fF' \\
\hline
\end{tabular}
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Register Name} & \multirow[b]{2}{*}{Pry} & \multirow[b]{2}{*}{Index} & \multicolumn{2}{|l|}{Mode ol Operation} \\
\hline & & & CGA & MDA \\
\hline ATC Index & R/w 3 \({ }^{\text {co }}\) & & & \\
\hline Palette & R:3C1/W:3C0 & 00 & 00 & 00 \\
\hline Palete & R:3C1/W:3C0 & 1 & 01 & 08 \\
\hline Paletre & R:3Ci/W:3C0 & 02 & 02 & DB \\
\hline Paletre & R:3CI/W:3C0 & 03 & 03 & 96 \\
\hline Palcue & R:3CI/N:3C0 & 04 & 04 & 118 \\
\hline Pateric & R:3C1/A13C0 & 05 & 05 & 08 \\
\hline Palate & R:3C1/ \(\mathrm{W}: 3 \mathrm{3CO}\) & 06 & 06 & 08 \\
\hline Paletre & R:3Ct/W:300 & 07 & 07 & 08 \\
\hline Paletre & R:3Cl/w:3C0 & 08 & 10 & 10 \\
\hline Palcte & R:3C1/w:3C0 & 09 & 11 & 18 \\
\hline Patcuc & R-3C1/w:3C0 & OA & 12 & 18 \\
\hline Palcue & R:3C1/W:3C0 & OB & 13 & 18 \\
\hline Palcue & R:3CI/W:3C0 & OC & 14 & 18 \\
\hline Palette & H:3Cl/w:3C0 & 0 & 15 & 18 \\
\hline Palcte & K/3Cl/w:3Cl & dre & 16 & 18 \\
\hline Paletie & R:3Cl/w:3C0 & 0 F & 17 & 18 \\
\hline Moxk Cut & \(\mathrm{R} \cdot 3 \mathrm{Cl} / \mathrm{W}: 3 \mathrm{CO}\) & 10 & 00 & 00 \\
\hline Overscancts & B:3C1/w:3C0 & 11 & 00 & 00 \\
\hline Clr Piane En & R:3C1/w:Sco & 12 & 00 & 00 \\
\hline Hor Pax Fan & \(\mathrm{R}: 3 \mathrm{Cl} / \mathrm{W}: 3 \mathrm{Cl}\) & 13 & 00 & 08 \\
\hline Culor Seleat & R:3Cl/w:3C0 & 14 & 00 & 00 \\
\hline Miscellangeous & R:3Cl/w 3 CO & 16 & 00 & 60 \\
\hline
\end{tabular}

\subsection*{5.9.33 CRTC Indexed Register 35: Overflow High}

\section*{10 address \(=345\)}
\(\therefore\) ㅇ

Description
verical juterlace alode ( \(1=\) enabie). CRTCB or CRTC internup: select
Extemal sync reset (gen-lock) the
lunctchr counter ( \(1=\) enable)
irc Coruarc (Split Sireer) Bit 10
vartical Sync Start Bit 10.
Vertical Sync Slart Bil 10.
Vertical Total Bit 10.
Vertical Tolal Buta.
Verucal alank Star Bn 10.
Access
RW
RW
KW
KW
RW
RW
RW
RW

\section*{Description}

When ser on \(\mathbf{I}\), will enable the verical iaterlace mede where the odid-numbered liaces will be displayed,
 fiming.
When ser we widi seleat the CRTCB or Spate as the verical mertuple.
Wher ser to 0 , vill seiter the CRTC. as the vericial intertupt


 TKN \(<0 \Rightarrow=\) EVEN field. Fur addilluial deaijls see Section 3, I/O pim descriptanis.
 No:e: S.NR SYNR.
 Eni, Vertica: Tosa' and Verical Blank siar values, respectively
5.3.34 CRTC Indexed Register 36: Yideo System Configuration 1 (VSCONF1) (pretected by key) \(1 / 0\) address = 345

\section*{Description \\ 16-bit //O read/write ( \(1=\) enable).}
\(\qquad\)

32 /16-bil display menory readiwrite (I=emable) Enable Memory Mapped Registers. Enable Memory Mapped
Enable system linear map.

Access

Esable Memory Management Buffers.
Refresh couns per line - 1 .
RW
RW
RW
RW
RW
RW
5.3.35 CRTC Indexed Register 37: Video System Configuration 2 (VSCONF2) (protected by key)
\[
\therefore f \text { wrot }
\]

Access

\section*{Description}

When set to 1 in ISA, Micro Channel, and Local Bus mplementutuns. will enable the 16 -bit CPL L/O read/write data bus interliace at the \(\mathrm{DB} \subset 15: 0>\) input.

When set 100 (prower-up default condition) in ISA or Micre Channel implennertations, wili cnable the 8-bit CPU b/U readwrite Lata bus interface. For lowal Fus implementions, the power-up default is 1.

When set to 1 (power-up defauli condation) in ISA, Micro Charnel, and Locai Bus implementations. will enable the 16-bit CPU menory read/arte data bus imerlace at the DB<is:O> mpu.
If When set to 0 in ISA or Maro Chansel implementations, will enable ate 8 -hit CPLं memory readurete
 memory readjurite data bus intcriace,
 Sections 2.10-2.11for more information of mernury mapped reg:sers, and Section 7.3 for the effect this bit has on the Video Memory Map.

Blt 4
When sel to 1 , enables the system linear nasf, i.e., the wode memory is acecssed directly as flat CPO addresses in an up to 4 megatyte area of physical miernory. ryther than wia the 64 K segment: at physacal address ACOOO/B0000.

Bit 7
 indirecty access the videe memory at an offsen detemined by the corresponding MMU \(\mathrm{B}_{\text {dse }}\) Fointer register. See 5ections 2.10-2.11 for mow inforitation una memory mapped registen, ald Section 7.7 in the effect wis bit has on the: Video Mermery Map

\section*{Description}
kescrued.
Test: \(1=T \mathrm{~T}\).I inlental test mode. \(\quad \mathrm{RW}\)
Priority thathold controt (O=wion memory BW) 16-lin ROM enatle.
Erfective Row/Columi memory address
(ABCH. R
(ASく3.C>*. MWD*, MWA* derinition cemal. RW RW
Resarved.
Display Memory dala bus width

\section*{Bit Description}
 When see te l, directs
for nortial eperatun.
 responsc time will atso be smcreased. This bit should rommaly be set to 5 For bence performatice

When sel to 1 , enables the 16 -bit ROM condigutatoon for 1SA, Mico Clarinel, and Local bes
 fur 15A and Micro Channel implenemtations, ard 32 -bit for Locel Bus. The followiog talse ullustrates the couFgurations:
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{16-bil 32-bt ISA: UCA Local}} \\
\hline & & \\
\hline & Eus & [315 \\
\hline 32-bitcral:le & . & 0 \\
\hline 16.bit cnatic & 1 & ! \\
\hline 8-but crable & 0 & - \\
\hline Fowcr-up & 0 & i \\
\hline
\end{tabular}

 is selt to 32 K

\begin{tabular}{|c|c|c|c|}
\hline & Programmed Bit 3 & fow & Colurin \\
\hline LSAM Type & vilue & Address & Addies5 \\
\hline \multirow[t]{2}{*}{\(256 \mathrm{~K} \times 4,6.16\)} & \multirow[t]{2}{*}{1} & Abes6\% & AFE8 \(0 \cdot\) \\
\hline & & A \(\mathrm{A}<800 \mathrm{~s}\) & Aact: \\
\hline \multirow[t]{2}{*}{\(512 \mathrm{~K} \times 4.8\)} & \multirow[t]{2}{*}{1} & ABC9\%; & AFE\% \(0 \times\) \\
\hline & & AAcy: \({ }^{\text {a }}\) & ARCb0, \\
\hline \multirow[t]{2}{*}{1M15 \(\times 4\)} & \multirow[t]{2}{*}{0} & A \(B<9 \%\) & Abe9.0\% \\
\hline & & AActres & AAA 90\% \\
\hline
\end{tabular}

When sectio 1 （power－up condition）CASk 3 个）＊＊are the CAS＊signals wothe Memory with one CAS＊ signal per byte of data，and，MWB＊and MWA＊are thc WRITE ENABRE＊sigrats whe Memony withooc WRITE ENABLE＊signal per word（two bytes）of datal This is the Rev．G－compaible mode．

When set \(100, C A S<3: 0 z^{*}\) are the WhITE ENABLE＊signals to the Memory with one WRTTE ENABLE＊signal per byte ofdata，and，MWE＂and MWA are the CAS＊signals to the Memory with one CAS＊signal per word（two bytes）of data This is the W32i－compatible mote．See Appendin C． for DRAM configuration examples．

The following table helps to illustrate the conditions：
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Bit 2＝1（power－up condiuion）（Rev．G compatibitity）} \\
\hline DRAM Signal & \(\mathrm{MD}<31: 24\)＞ & MI＜23：16＞ & MD＜15：8＞ & MD＜ \(70 \times\) \\
\hline CAS＊ & CASく3＞＊ & CASく2＞＊ & CACcl＞＊ & CASくd＞＊ \\
\hline WRITE ENAMI T：＊ & MWF＊ & MWE＊ & MWA \({ }^{\text {a }}\) & MWA \\
\hline \multicolumn{5}{|l|}{Bit 2＝0（w32i compatibility）} \\
\hline DRAM Signat & MD＜31：24＞ & MD＜23：16； & MDel5：8＞ & MD＜\({ }^{\text {dos }}\) \\
\hline CAS＊ & MWB＊ & M \(\mathrm{WB}^{*}\) & MWA \({ }^{\text {a }}\) & MWA＊ \\
\hline WRITE ENABLE＊＊ & CAS3＊ & CaS2＊ & CAS！＊ & CASO＊ \\
\hline
\end{tabular}

NOTE：The W．32i mode allows DRAM to operate in an inkerleaved fashion The IT 4 OMonvs 52 utlizes the interleave capability and uses the 2CAS＊and 4 HR［TT．ENABLE＊signal coaliguration enclusively．ET4000／W 32 designs should be configured in this manner to provide an ujgrade path to the ET4000／W32i．The memery desige method used on the shematec cxamples（Sce Apperidix C）use four 256x16 DRAMs．In W32 designs，oniy 2 of these are anstatlet for a thed of IME D＂KAM． With the W32i，wo or four DR ANis can be inslalled．The W32i has two addutuonal sugnals，CASC and CASD＊which available on pins 95 and 96 ，respectively，on the 160 －pin W32t package．

\begin{tabular}{|c|c|c|c|c|c|}
\hline E3ita & MDE31：25 & MD＜23．16\％ & MDe－15：6＞ & MD． 70 & Eus Wedt \\
\hline 1 & MDe31：24＞ & MD＜23：16＞ & Mocists & AD＜ 3 （1） & 32 \\
\hline 0 & & MD \(<19 ; 8>\) & － &  & ： \\
\hline
\end{tabular}
\(\frac{M D<23 \cdot 16 ;}{M D<23: 16>} \quad \frac{M D<16 S=}{M D C 15: B>}\)
（1）\(<1\) 19：8

\(\mathrm{MD}<\mathrm{F}=\mathrm{I}\)

32
，

\section*{Access}
 one sereen row to the nexi．Sce Section 5．3．22，CRTC Inde：ch Kegister 13．Row Off sel．
fovides a ninth bit fin the value of the inemal horizontil charakter counter at whith horizontal syec as on star．Sec Section 5．3．7，CRTC Indexed Register 4：Hociizonial Sync Start．
 is wo start．Sex Seiuen 5．3．6．CRTC：Indexed Register 3：tionazontal Blank Surt．
 Horizonal Tot：

\section*{Description}

Row Offsel Bit 8
Rescrved．
Reserved．
Horizoncial Syne Start Bit 8 ．
Reserved．
Horizonal Blank Start Bit 8.
Reserved（always set to 0 ）．
Horizontal Tolal Eit 8.

Bit Description
［雷
5．3．36 CRTC Indexed hegister 3F：Horizonial Overllow
\(\mathrm{I} / \mathrm{O}\) address \(=3\) 3：5
git

\section*{T}

\subsection*{5.4 TS Register Descriptions}

The CPU interface to the ET4000N32 internal Timing Sequencer (TS) consists of eight read/write registers. Of wesc registers, one register, the TS Index Register, is accessed by a scparate independen l/O address (3C4). The remaining scyen registers are imemally indexed, which means that they are accessed via a common 1 HO address ( 3 C 5 ), with onc of the seven registers hat is actually selected by the TS Index register.

\section*{Table 5.4-1 IS Index Register}


\subsection*{5.4.1 TS Index}

100 address \(=3 \mathrm{C}\)
\begin{tabular}{|c|c|c|c|}
\hline Bit & Description & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Access}} \\
\hline 7:3 & Rescrved. & & \\
\hline 2:0 & Curent TSindex. & RW & \(\cdots\) \\
\hline Bit & Description & & \\
\hline Bils 20 & \multicolumn{3}{|l|}{Provide the index of the curenty selcated inlemally indexed register. The. TS Irdex regiser determine which TS indexed regtster will te accessed wher a readiwrice os performed usiag port address 3 C 5.} \\
\hline
\end{tabular}

\subsection*{5.4.2 TS Indexed Registers}

The following registers are TS indexed registers These registers are atcessed by first wriung the index cif the desired regreler othe TS midex register and then accessiag the register using adtruss 3Cs

\section*{\(T\)}
5.4.3 TS Indexed Register 0: Synchronous Rese \(1 / \mathrm{O}\) address \(=3 \mathrm{C} 5\)
\begin{tabular}{|c|c|c|}
\hline Bil & Description & Access \\
\hline 7:2 & Reserved. & \\
\hline 1 & Symehronous reset contrei. & RW \\
\hline 0 & Asynihronow reset conimel & RW \\
\hline Bid & \multicolumn{2}{|l|}{Descript|om} \\
\hline Bit 1 & \multicolumn{2}{|l|}{ te ser to 1 for the uming sequencer to rul.} \\
\hline & \multicolumn{2}{|l|}{For compaibildy, a synchronous reser should te in effect whenever chazig:ng the Timing Sequencer or clock stace. In gencral. syachrorous reses periods slould be kept as shors as possible no prevenu pussible Loss of dasplay nemery data.} \\
\hline Bil 0 & When sce to (f) commands sequencer will run unjess bit & achanocusly clear and ball. When sel to late \\
\hline
\end{tabular}
5.4.4 TS Indexed Register 1: TS Mode
\(\mathrm{I} / \mathrm{O}\) addec:s \(=3 \mathrm{C}\) 5
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7:6 & Reserved. & \\
\hline 5 & Seceen off (fast mode). & RW \\
\hline 4 & Shatis. & Hity \\
\hline 3 & Leit cockst? & RW \\
\hline 2 & Vidcoload/2. & RW \\
\hline 1 & Fescrved. & \\
\hline 0 & Timirg sequencer slate (ban Cot & KW \\
\hline Bit & Description & \\
\hline Bils & When sel in i, will foree blatik 1ats mout. & Owing Cel \\
\hline Eil 4 & When sal 10 k , will allaw the & des whe lo \\
\hline Bn 3 & When sel to 1 , priavides seguen gencrates bic di: chok signa: naster clonk. In VGA/EGA con 320, ratien hisel f40), puxels per & he MC:LK cifccrivel clock/2 mo \\
\hline Hil 2 & Wher: sel 10 I, doads the vadew & TC) inpla \\
\hline Bu 10 & Jh. by is used to sel the umin & \begin{tabular}{l}
Whers set \\
Sctul
\end{tabular} \\
\hline
\end{tabular}
5.4.5 TS Indexed Register 2: Write Plane Mask

\section*{10 adress \(=3 \mathrm{C} 5\)}
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7:4 & Reserved & Access \\
\hline 3 & Wrie erable display memury plane 3. & HW \\
\hline 2 & Write enable display menory plane 2. & Kw \\
\hline 1 & Write enable display memory plane 1. & RW \\
\hline 0 & Write enable display memory plane 0 . & RW \\
\hline Bit & Description & \\
\hline Bits 3:0 & The Write Plane Mask register enables of by-plane basis, and is only useful for 16 set to "OF" hex. & ; wrice acc systems. I \\
\hline
\end{tabular}

\subsection*{5.4.6 TS Indexed Register 3: Font Select}

1/O address \(=3 \mathrm{C} 5\)


\section*{Description}

Reserved.
Fonl Select B (fisB
Font Selec: A (FSA×2;0>)

\section*{Access}

\section*{Description}
 simultancous charatiter sels for display.

Based on the Selection hus derived, dee fort memornes are welected as folliows:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|c|}
\hline Selection Biss & Selecied & OMsel in \\
\hline (SEL-R゙0 \({ }^{\text {2 }}\) & Seomend & Forl Memory \\
\hline 000 & 0 & 0 \\
\hline 001 & 1 & 16K \\
\hline 010 & 2 & 32 K \\
\hline 011 & 3 & 48K \\
\hline 100 & 4 & bK \\
\hline 101 & 5 & 24 K \\
\hline 110 & 6 & 40K \\
\hline 111 & 7 & 56 K \\
\hline
\end{tabular}

 \(\left(B / N^{\prime}\right)\), and 4 and 4 respectively for Color, \(A\) total or 2048 characler codes are available from whac
 deifiee which of the forts and character sets are bereg used an a given ume. If ATC Lndened Register \%, bit 7 is 0 . thes register is used as is.

\section*{Tseng Labs. inc \(10 E\)}
\begin{tabular}{ll} 
Description & Access \\
Reserved. & \\
Erable Chain 4. & RW \\
Ouddeven mode. & RW \\
Extended nemory. & RW
\end{tabular}

Ouldicuen mide.
Extended nemory.
Reserved.

\section*{Description}

When sct to a 1 , will enatleChaire 4 dinear graphics) mode, whemeall four menories are chained linear!) intor bye oriemed memory aray wherehy cathbyle will provide the enght bits ( 256 -color) for eath puxel.

\begin{tabular}{ll} 
Ac1: \(C\) & Plane \\
00 & 0 \\
01 & 1 \\
10 & 2 \\
11 & 3
\end{tabular}

\section*{Wher set wo 0 , :he processus will access data sequentially in the but plate}


 plantes acooting to die Write Map mask register.
 Section S.4.t, Font Seleal Register)

\subsection*{5.4.8 TS Indexed Register 6: TS State Contral (protected by KEY)} \(1 / \mathrm{O}\) address \(=3 \mathrm{C} 5\)

Hill August 21, 1992 @ \(8: 33 \mathrm{am}\)
5.4.9 TS Indexed Register 7: TS Auxithary Mode (protected by KEY)

LO adderss = 3C5

IMPORTANT: All CRTC "character" liming calculations, with the exception or 9 dockhaz are based or 8 dow/char zegardless of the bit \(I\) and 2 or TS Slace Contrit Reginter's programmed value.
\begin{tabular}{ll} 
Description & Access \\
\begin{tabular}{l} 
Reserved.
\end{tabular} & \\
Timing sequencer stare (bit 1 \& 2). & Rw \\
Reserved. &
\end{tabular}

Reserved.
kw

\section*{Description}

These bits are used to set the exlended timing sequenter statc value. Jin conjunction with bit 0 of the TS Mode register, the addiuonal stales are used to deline the number of duts per charaçer in text mode:
\begin{tabular}{lll} 
TS & & \\
Bin & Mode & \\
\(\leq 2 i 1 z\) & 0 & dotsichar \\
11 & 1 & 16 \\
10 & 0 & 12 \\
01 & 1 & 11 \\
01 & 0 & 10 \\
00 & 1 & 8 \\
00 & 0 & 9 \\
10 & 1 & 7 \\
11 & 0 & 6
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7 & VGA mode. & EW \\
\hline 6 & Seleel MCl. K/2 (il bil 0 is set to 0).RW & \\
\hline 5 & BIOS ROM Address Map 2. & RW \\
\hline 4 & Reserved (Set to 1 aways). & RW \\
\hline 3 & BIOS ROM Address Map 1. & RW \\
\hline 2 & Reserved (Set to 1 always). & RW \\
\hline 1 & Reserved. & \\
\hline & Sule: MCLK/4, & RW \\
\hline
\end{tabular}



Bit 6

Bis 5.3

\section*{ription}

Seleal MCL.K/2 (if bit 0 is set to 0).RW
BIOS ROM Address Map 2.
Reserved set to 1 aways).
Reserved (Sat to 1 always).
Reserved.
Sule: MCLK'4.

When sel to 1 , will civice the MC.LK input cloch frequency by tho af bit 0 is equat is 0
These hici are used for sctection of ROM B:OS address sface:
\begin{tabular}{|c|c|c|}
\hline Bi: & ROM EIOS Address & \\
\hline 35 & Map Scace A!localion & Tolal Mernory ueed \\
\hline 00 & C0000-63-7\% & 16 KH \\
\hline 01 & disabled & 0 KB \\
\hline 10 & COOOLCSFFT: C6SOM-C7FF' & 3 CK 3 \\
\hline 11 & COOOC-C7FPs* & 32KB \\
\hline & ur defzul: & \\
\hline
\end{tabular}

Bir C

\subsection*{5.5 GDC Fegister Descriptlons}
 registers, two are accessed by separate independent WO addrcsses. The remaining 9 registers are internally indexed. which means that they are actessed via a common I/O address (3CF), with one of the 9 registers watt is actuzily accessed selected
by the GDC Index register. by the GDC Index register

\section*{Table 5.5-t GDC Registers and Addresses}


\subsection*{5.5.1 GDC Segment Select}
/ \(/ 0\) address \(=3 \mathrm{CB}, 3 \mathrm{CD}\)

\(T i\)
5.5.2 GDC Index
\(1 \mathrm{O})\) address \(=3 \mathrm{CE}\)
\begin{tabular}{lll} 
日it & Description & Access \\
\(7: 4\) & Reserved. & \\
\(1: 0\) & Curent index. & RW
\end{tabular}

\footnotetext{
Git Description
Bist 3:0
Description
Pravide the index of the curenty selected intemal:y indexed register. The GDCC Index register decernias: which GDC indexed register will be accessed when a readiwite is perfomed using posi addecss 3CT.
}

\subsection*{5.5.3 GDC Indexed Registers}
 and then accessing the indexed register usirg porl andress ? C. F .

\subsection*{5.5.4 GDC Indexed Register 0 : Sel/Reset \\ LO andress = W:F}
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 4\) & Rescrved. & \\
3 & Setreset vatue for map 3. & RW \\
2 & Set'reset vatue for map 2. & RW \\
1 & Sectrese vatue for map 1. & RW \\
0 & Sel'resel value for map 0. & RW
\end{tabular}
 GDK Indexal Register 1.)

\section*{T}

\subsection*{5.5.5 GDC Indexed Register 1: Enable Set/Reset \\ \(1 / 0\) address \(=3 \mathrm{CF}\)}
\begin{tabular}{lll} 
Bit & Description & \\
7.4 & Rescrved & Access \\
3 & Enable selfreset value for map 3. & \\
2 & Entable setireset value for map 2. & RW \\
1 & Enabs sel/reser value for map 1. & RW \\
0 & Enable selireset value for map 0. & RW \\
& & RW
\end{tabular}

\section*{Description}

Each enabic setreset bit enables or disables the setireset [unction for the corresponding meriery map (or planc), 0-3. When any of bis 0-3 are set to 0 , the selfesel funclicn in the correspunding pley map (or disabled. When set to 1 , dhe setfeset furiction witl be enablet when enabled, the sel'rosct function will be euther a (lor \(F F\) value in the addressed byic of a given plane, depencing on the cretresel value (sens 5.5.4, GDC Indexed Register 0). When set'resen is ensbled fora planc the lotical fin (a) Sccien 5.5. GDC Indexed Register 3) opcrase on the selveser walue for each plane and hetions (see Sectinn plane: the bit mask (see Section S.5.12, GDC Indexed Regisicr 8 ) is also in arfoct Whed what unction is disabled, the atdressed byte in a given plane is wiuten as a data, according w the write mode in effect and the bit reser function has no effect in wite montel.

\subsection*{5.5.6 GDC Indexed Register 2; Color Compare \\ \(1 / 0\) address \(=3 \mathrm{CF}\)}
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 7:4 & Reserved. & \\
\hline 3 & Color compare value for plaje 3 bits & RW \\
\hline 2 & Color compare value for plane 2 bits. & Kw \\
\hline 1 & Color compare valuc for plane 1 bits. & RW \\
\hline 0 & Color compare value for plate 0 bils. & RW \\
\hline
\end{tabular}

\section*{Description}

The Colar Congare register is used in read mode 1 to delcmine which pixels from the display memery lecation, read by Uue CPU, nauch a specified color. The 4 -bil color value it die color comparce repiscer is compared to the 4-bil color value of each of the elght pixels, spread scross the four planes.

From thiscomparison, abte value of \(t\) is returned in the databyte \(\omega\) the \(\mathrm{Cl}^{\prime}\) U, al the position correspondine
 the Color Compare regisier. In other words, an 8-bit value is retumed to identify the comparisen for ald eighl prels.
 systems. In the "LINEAR BYTE" (25ticolers) systems, the colorcompare eperation should be performed at the (PC Jove!.
5.5.8 GDC Indexed Register 4: Read Plane Select

40 address \(=3 C F\)
\begin{tabular}{ll} 
Description & Access \\
Reserved. & \\
Function select. & RW \\
Rotate count. & RW
\end{tabular}

\section*{Bit}

Bits \(\mathrm{A}: 3\)

\section*{Description}

Select the logical operation to be performed by the ALU on incoming CPU tata and lateled data. The logical operation is performed on on:ty those bits dhat are evabled by the bil mask register, mask-disabled bis are writen as die tatiod value (resulticg froun previuus menory reads) only, For thase bits ita: are mask enabled, one of fous logical operations myy be performed berween (ll) da:a and lach hed daza by seuing the function select as feltows.
\(\square\)

\section*{\(\begin{array}{lll}\text { Bit } & 3 & \text { Loginatoperation }\end{array}\)}

3 MOVE CPU data through uncharged
AND CPU data with lacherd datia
OR CID Cl cala with hathed dals.
YOR CPU daw with tatched dial.
 by A Minin to 0 . The


\begin{tabular}{lll} 
Eit & Description & Access \\
\(7: 2\) & Reserved.
\end{tabular}
\(7: 2\)
\(1: 0\)

Bil
B心 \(\mathbf{1 : 0}\)



\subsection*{5.5.9 GDC Indexed Register 5: GDC Mode} 100 address \(=3 \mathrm{CF}\)
\begin{tabular}{ll} 
Descripsiof & Access \\
Reserved. & \\
Enable 256 color modc. & RW \\
Shitt & RW \\
Cddeleven made. & RW \\
Read mode. & RW \\
Reserved & \\
Wrik mode. & RW
\end{tabular} the registers are loaded to support the 256 -color mode.

Bit 5 When set to 1 , thables the A'tC's shift registers to shift for pixel formatcing to suppore the \(320 \times 2004\). wolor CGiA mode.

Bit 4 When set to \(\mathbf{1}\), to selects odd/even addressing mode, in which even angps arc wecessed will even addresses and odd maps are accesssed with odd addresses. The funstion of this bit is to determine frumt which display map data is wo be souled to the cPU data bus on a CPU read in odd/even mode. If bil which display map data is wo be rouled to the (PPU data bus on a CPUJ read in odd/even mode. If bil
4 is I and the Read Map Seleci register selects either of twe maps in a given pair, then the even made is 1 and the Rcad map Select register selects either of twe maps in a given pair, then the even madp
is selected if address tinc 0 is 0 , and the odd map is selecied 5 address tire 0 is 1 . Bir 2 or CRTC Timiny
 Sequencer Indexed Register 4 sthould be set the 0 nolect oddic ver mode, to generate all addresscontrol
other than the read data seiection in oddieven adjressing mode. Oddeven addressiag moje is useif] olher than the re
for text medes.

Selects the read mode. When but 3150 (Read Mode 0), the data read from the map indicated by the read map select register (sce Section 5.5.8, GDC Indexed Register 4) is retumed on the CPU dita bus. This is the nomal read mode of opcration. When bit 3 is 1 , the color comparc operaton is enabled on a Crli reat (Sec Section 5.5.6, Color Cumpare Register).

Thesc buts seleci the riode in which data bytes are co be wrinen to screcn memory. The write modes are:

Write mode 0 . Eath CPU data byte writen to disphay mennory, as modifted by the current rutation se timin (see Section 5.5.7, GDC. Indexed Regisur 3). is combined with the latiched dave fur each mar arror:tini wo the curent dogical function (see Section 5.S.J, GDC Indexcd Registe. 3) and writer to cach dermery map. The byte writuen by the CPU is passed idenically to the ALU for eacth map: differences in the hyte actually writen w the screen inay occur due w differences in the farch contents for different maps. If the setreset tunction is crabled For any map (see Section 5.55, GIDC Indexad Regiter 1), then the selfesel bit value for diat matp (see Section 5.5.4, GDC Indexed Register 0 ) is writer to every bit of the adetessed byte of that map regardless of the CPU data. The bit mask (see Section 5.5.12, GOC Inde xed Register 8) applies in write rmode 0 . and causes the latich data atone \(w\) be writen bo cach bit that is mask disabled.

Write mode 1. The data contaned to the latctics is written unmodified to the addressed byte in screen memory. All maps are writen. This is usefel for rapid data movement from display meenory to display mernory, as all maps can be talched with a single read and then written witha single wris mole toperation The bit mask is ignored, as is the selected togicat furction. The selveser function is also :gnoned

Write mode 2. Each bit, 03 . of the data wrikern by the CPU is extended to a byte and writien \(\omega\) the low coresponding planes. Bit 0 ot the data byte is extended to a byle and winten whe addressed hyte of map 0 , bil 1 is extended to a byto and writen to arapi 1 , and so on up to bit 3 , which is extended no a byte and writuen to map 3 . The bif mask applies to the data byte for each map; that is, after the bit for cach map from the CPU dara writen is exkended os a byte, the byce for each map is masked as if in were the CPL data byte. The selected logical function opecates nombatly on the byte for each map ant the latched data for that map. The setrescioperation functions nenally, overriding the write noote 2 bil for a given map when enahled. The data rotate register has no effect in write mede 2

Write moxic 3. Eighat bisc of the value contained in the Sct/Researegister ane written for each map. Rotated CPC data are ANDed with data from the bit mask reg:sker (see Secion i.f. I2, GDC Indexed Regisker 8) to produce an 8 -bit valuc that functions as the bit mask rezister dies in write mowes 0 and 2.

\subsection*{5.5.10 GDC Indexed Register 6: Miscellaneous \\ I/O address = 3CJ}
\begin{tabular}{|c|c|}
\hline Description & Access \\
\hline Reserved ( \(=0\) ). & \\
\hline Membiry map. & RW \\
\hline Fomble thederen made. & RW \\
\hline (Jraph:cs rame enajuc. & RW \\
\hline
\end{tabular}

Graph:cis mente coajle. RW

\section*{Description}



Soe Secion 7.3 for the effect th:s t:e has un the Yideo Meriogy Map
When set to 1 , enables oddieven mote. will cause die neptacemen of the CPU aditers hit 0 with a high orece bil, and the odlevern ruaps are "chained" vis the CPV AO bit.

Wher sel to \(I\), enables grapliics mide
5.5.11 GDC Indexed Register 7: Color Care UO mdress = 3CF
\begin{tabular}{ll} 
Description & Access \\
Reserved. & \\
Enable color compare color output 3. & RW \\
Enable color compare cotor output 2. & RW \\
Enable color compare color outpul 1. & RW \\
Enable color compare color output 0. & RW
\end{tabular}

Enable color compare color outpur 2
Enable color compare color output 0 )

\section*{Description}

Each bitenables or disables thc panicipalicn of the coresponding plane in a a a d miode 1 color comparisur. If a bit is I. then the color compare is enabled for thal plane (see Section 5.5 .6 , GDC Indexed Register 2: Color Compare). If a bit is 0 , then the value in that plane hasnoeffect on the value retumed by the cols comparison.

TU

\subsection*{5.6 ATC Register Descriptions}

The CPU interface to theET4000/W32 internal Atribute Controller(ATC) tonsists of 23 readiw rite registers, and aseflarat fip-flop (1-bit register) which can be wgegled beiween index/dala mode. Two VO addresses are used invorgencion wit the index/dats mode flip-flop to access the 23 registers as foilows: An LO read wo the Inper Statur I register (3BA or 3DA depending on monochromeor colurnode respectively, as controlled by bit 0 in the Miscell ancous Outrat Regis(e) will rese the index/dalaflip- hop toindex mude. Every [/O write widl ponaddess 300 will alsologgle the index/data lip-lloreciween index and data mode. The index value in the ATC index register can be reat with UO address 3C0 White in index mode, the index value can be writen to the ATC infex register with VO address 3 C 0 , with the index/data mode fip-flop tage.ec ta the data mode.

 IO address 3CO. with the inderfitata mode flip-flep togited to the index reode.

Table 5.6-1 ATC index Register
\begin{tabular}{|c|c|c|}
\hline Register Name & PatAddress & Indexed Address \\
\hline ATC lndex register & R: 3C0 W 3C0 (TNDEX) & \\
\hline
\end{tabular}

Table 5.6-2 ATC Indexed Registers
odexed Reaister Name
Palene
ATC Male
Oversca:
Gulur Plaric Enacle
Harizontad Fixel Panaii:
Color Resct
Misaeliancas:
Mizeliancol:

R:3C1 W: 3C0(DATA
0-F
\begin{tabular}{|c|c|}
\hline R:3C1 W: 3C0 (DATA) & 0-F \\
\hline F: 3C1 W. 3CC (DATA) & 10 \\
\hline \(\mathrm{R}: 3 \mathrm{Cl}\) W: 3C0 (DATA) & 11 \\
\hline \(\mathrm{K}: 3 \mathrm{Cl} \mathrm{W}: 3 \mathrm{CO}(1) \mathrm{ATA})\) & 12 \\
\hline R: 3C1 W 3CO(DATA) & 13 \\
\hline  & 14 \\
\hline \(\mathrm{R}: 3 \mathrm{Cl}\) W 3COs OAJA & 16 \\
\hline R:3CI W: 300 (untas & 17 \\
\hline
\end{tabular}

R: 3C1 W: \(3 \mathrm{Cl}(\mathrm{DATA}\)
R: 3C1 W: 3CO (DATA
: 1 W:
R.OC w ふo (Dn]a
R.3CI w Mo (Dat
\(\mathrm{R}: 3 \mathrm{Cl}\) W: \(\mathrm{CO}(\mathrm{DAJA})\)
\(\qquad\)

\section*{Description}

Each bit of the Bit Mask register cither blokiks the corresponding CPU data bit from atfuring the value written to the screen or allows the CPU daca bit through. A zero (0) value blocks and al valueparses CPL data. If a given bit is blocked, the value stared in that bit of each data lach (one for each plane) is scmi o the cormespondiny screen plane. If a given bit is enabled, the value in that bit position of the CPU dute is pasted to the ALL, where it can be mixed with latched data via the selected Jogical funcion. The data will be rolated (see Sceton 5.5.7, GDC Indexed Register 3) berore it is masked.
\begin{tabular}{lll} 
Bill & Description & Access \\
7:6 & Reserved & \\
5 & Palene RAM address source. & RW \\
4:0 & Currem ATC index. & RW
\end{tabular}

\section*{Bit \\ Bit 5}
Descriplon
Paletce RAM address source.
Current ATC index.

Access

RW

Description

A value of 0 enables CPU write access to paletre RAM, and replaces all video outpuls with the conends of the overscan register. A value of I disables CPU write access to palete RAM and allows ATC atcess of RAM. This bit must be set to 0 before the CPU can update any palette RAM location. After the palete RAM is updated, this bit must be set to I so the ATC cati access the palele RAM for video iafurnation. Bits 4:0 Provide the index of the currently selected intemally indexed register

\section*{TiU}

\subsection*{5.6.2 ATC Indexed Registers}

The following registersare the ATC idexed registers. These registers arcaccessed by wriung the index of the desired register to the ATC Tndex regaster when the adex/data fip-Лup is in INDEX mode, and then accessed using the index value in the ATC Index Register. Sce details under previnus paragraytis under ATC Register Des̈riptions.

\subsection*{5.5.3 ATC Indexed Registers 0-F: Palette RAM}
\(R\) : Port adiress \(=3 C\)
\(W\) : Por address \(=10\) (index/dala fip-flon in DRTA mode)

Bit
7
6
5
4
3
2
1
\(\%\)

\section*{Description}

Reserved.
Reserved.
Secondary red viden. RH'
Secondary green/ntensty videal. RW
Sceondary blue/mono vidco.
Primary red video.
Pumary green video.
Primaty blue vido.

\section*{Access}
\(R W\)
\(R W\)
RW
RW
RW
RW
Rw
 and graphes bit maps and the colors accually generated by ha wide o circuitry. Each paene register 0 . Is
 planeiof video dita for a giver pixel eaters the palcte RAM and addresses one of the 16 paletie rextsers, and the 6 -bil val ue stoved in the comespondicg felente register is iransfered to the ou:pul lacthof the ATC
 programmed to have coulents the same as the indexed address w" pass throdgh" che imerual iffsplay dali.

\section*{Bit}

Bils 5:0

\section*{Description}
 present

\section*{优}

\subsection*{5.6.4 ATC indexed Register 10: Mode Control \\ R : Post address \(=3 \mathrm{C}\)}

W: Pon andress =3CD (index/data Ilip-llop in DATA mede)

Bit 6 When set \(w\) l. halves the rave of pixeloutp;n o the screen sweh that only 4, as npposed to the usual 8, pixels are output in a tharacterclock time. This is nomally usedmal'; for the \(320 x 20025(1-c o l e r\) graptics mode. For all other 256-color modes, whis bit should be ser to 0 .

Bit 5 When set to one ( f ) disables pixel panning while in split screen, while a 0 will enable the pannong.
When sel to l, enables bliaking in both text and graphies modes. When enabled in text mode, blinking occurs whenever bit 7 of the atribute byte for a given character is 1 ; when enabled on grapheses mode. blinking occurs for all biss that have a I in the intensity plane. Blonkjng is performed by togeling the most significantaddress Jine (bit 3) info the patetse RAM, thus toggling the vadco datio betwen the lower cight and upper e)the paleule RAM registers. This means hat the ettec of the blink (for example, reverse vited
 modes can be programued to support all the attritutes of bext modes, for instince.

NOTE: The nan, blinking bits will usc the upper eight palete registers.
When set to 0 , disables blinking; iathiscase bit 3 of the palete RAM addeess is multiplexed diectly form the video data to the paletue KAM. When bil 3 is 0 , alt 16 simulancousculors aree tabled ingrapthi"s mode; in cext mode, alt 16 background colors are available sinullaneously

Bit 2 When sel to 1, specifies that in the 9 dos/character sate (centrolted by the CRTC), the ainth (and last) dot produced horizontally per character should replicate the eighth dot for charaster codes \(C 0\) hex Lhrough DF hex. The ninth dol of atl other character codes is always 0 when line graphiss is cnabled. This is momall y used toallow thetext modeline graphics characters supported an the IUMMonochrome Display, which are f.dot wide characters in a 9 -dol-wide charexter box, to connect. If th:s bit is 6 and we CRTC is set to the 9 dols/character state, then the 9 th dot will display bit 7 of Intensity Memory plane (planc 3 ;).

Bit! When sel to 1 , selects a monochrome display atributc; when sel to 0 , enables a coler display atterbute.
 to process the pixel data in texl miove.

\subsection*{5.6.5 ATC Indexed Fegister 11: Overscan Color}
\(\mathrm{R}:\) Pon address \(=3 \mathrm{Ci}\)
\(W:\) Port address \(=3 C 0\) (undexdata flip-flop in DATA mode)
\begin{tabular}{|c|c|c|}
\hline Git & Description & Access \\
\hline 7 & Secondiry Incensity border color. & KW \\
\hline 6 & Socundiry Red border color. & RW \\
\hline 5 & Sccondar's Greea border color. & RW \\
\hline 4 & Secondary tlue border cotor. & RW \\
\hline 3 & Intensily border coler. & RW \\
\hline 2 & Red torder color. & RW \\
\hline 1 & Green border coler, & RW \\
\hline 0 & Bluc hoider color. & RW \\
\hline
\end{tabular}

This register defines the color to be disptayed around the per:mener of the workine sireen area the barder or oversian color).

\section*{Description}

Bils 7.0
pirs. This valuc is \(\frac{2}{6}\) for the monc:lorome display.

\subsection*{5.6.6 ATC Indexed Register 12: Color Plane Enable}
\(R\). Fort address \(=\mathrm{BCl}\)
W: Pout addess \(=300\) (indexdata fip-biop ir DATA maves
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 6\) & Rescrved. & \\
\(5: 4\) & Yideostaus selcer. & RW \\
\(3: 0\) & E:nahbe platie. & RW
\end{tabular}

Bit Bits 5:4

Description
These tiks select two of cithe colcr outputs to be returncel by be Stalus registur as follows
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Input Status Pegister 1} \\
\hline \multicolumn{2}{|c|}{Bit} & \multicolumn{2}{|c|}{Bit} \\
\hline 5 & 4 & 5 & 4 \\
\hline 0 & 0 & pr & PB \\
\hline 0 & 1 & \(\mathrm{SG}^{\text {j }}\) & SH \\
\hline 1 & 0 & fl & P(i) \\
\hline 1 & 1 & SI & 58 \\
\hline
\end{tabular}

Bils 3:0



\subsection*{5.6.7 ATC indexed Register 13: Horizontal Pixei Panning}

R : Por address = 3Cl
W: Port address \(=3 \mathrm{CO}\) (index/dala flip. flop in DATA mode)
\begin{tabular}{|c|c|c|}
\hline Elt & Descriplion & Access \\
\hline \(7: 4\) & Reserved & \\
\hline 3:0 & Horizontal pixel panning. & RW \\
\hline Bit & Descriplion & \\
\hline Bisis 3:0 & These bits spacify the run o nine pixels are support & \begin{tabular}{l}
video dat \\
s. a valu
\end{tabular} \\
\hline
\end{tabular}

These bits spacify the rumber of pixels by which the video data should be shifed to the Ieft. Shifis of wh 0.7 signify shifts of i.8 pixets, respertively

NOTE: In 6 - and 7 -dot modes, values of 2 and 1 , respectively, signisy no shift

\subsection*{5.6.8 ATC Indexed Register 14: Color Selec \\ \\ \(R \cdot\) Port address \(=3 C\)} \\ \\ \(R \cdot\) Port address \(=3 C\)}

W: Port address \(=3 C 0\) (index/tata חip-nop in DATA mode)
\begin{tabular}{lll} 
BHt & Description & \\
\(7: 4\) & Reserved. \(\%\) & Access \\
3 & S_color \(\%\). & RW \\
2 & S_coin 6. & RW \\
1 & S_colors. & RW \\
0 & S_colur 4. & RW
\end{tabular}

\section*{Description}

Provide the wohigh-order bits of the exported digutalcolar value in plane systants. With 256 . cellor graphi modes, the 8 -hit otribule value becones the 8 . bit digital value cxponed from the chitp.

Availatle for replacerrent use of biss 5 and 4 of the aturibute palelte registers, forming an 8 -bit value for color to becxponed from the chip. When bit 7 of the ATC. Mode register is set 40 , bits 1 and 0 are selected as SG and SB ourputs of the plane systen.
5.6.9 ATC Indexed Reglster 16: Misceltaneous (protected by KEY)
\(\mathrm{R}:\) Port address \(=3 \mathrm{Cl}\)
\(W\); Port address \(=3 C 0\) (index/data Ilip-flop in DATA mode) value),
When ser \(\frac{1}{} 1\), enatles the ATSK bit (atributc sker). This is used to erable a 2 -byce Character Cute (CT) feane. The AISK bit will be tesed to compensate lae atribute (ATT), Display Jimable (DE) and Cu sur


For the first font fetch (i,e.: RASBL ard CASL \(<3: 2>\) DRAM access cycte) of each scall line, we Min<3I:IG> fona data are groored.
 and this Charazer Code should remain lateted until the next font feach cyole.

 even font ferrí cycle via wanisparenil latches.
 to the 16 -bit Character Code (i.e., the extemal EPROMs are enabled), etsi the DRAMs fort ( \(\mathbf{w}\) thieh Conears the VGA's fonti) are enabled
* It the lasicharacter fent of the scan line ts a 24 bit wide font and hegins at en ofit enlumn, ther wily hali of the font (12-dof) wifl bet tublizyul.




Description
Bypass the internat palcur
-byle character codic enable
Seleci Itigh Resolutionficolor mode. Rw RW

Reserved.
KW
Proech extemal DAC.
KW
Protert border.

\section*{cess}  -

Eil
\(\frac{54}{061}\)
\(06 \quad\) Nomal prower-up delaciil (8-bitadack
\(10 \quad 16\) but persciock mede
0. Reserven

I! Rexerved
 100 .
Eil
 は1)

\subsection*{5.6.10 ATC Indexed Register 17: Miscellaneous 1 (protected by KEY)}

R: Pon soddress \(=3 \mathrm{Cl}\)
\(\mathrm{W}:\) Port address \(=3 \mathrm{CO}\) (inden/data flip-(Bop in DATA mode)
When set to 1 , are used to select forcground colors of red. green, and blac, respectively.

\section*{Description}

When set if \(I\), protects the internal palcte R.AM and is used to redefine the atyibute bits as follows:

\section*{Monochrame}
\begin{tabular}{|c|c|}
\hline Attribute & \\
\hline Bil & Descriadion \\
\hline 7 & Normal/reverse vidico \\
\hline 6 & Full/half inensity \\
\hline 5 & Charaster visiblehovisible \\
\hline 4 & Underdine ofl/an \\
\hline 3 & Blinkeng oflen \\
\hline 2:0 & Font selcet \\
\hline
\end{tabular}

When set to 1 , enables the reverse video atribute. When set te 0 . displeys nonntal vides

 (When ATC Indexed Register 17 but 7 is set to : TS Indexed Regisler ?: Font Select is rol used.)

Fiote that to get the atributes indicated here the ATC: Palete RAW registers 0-7 must be propramund th \(0,0,0,0,18,0,8,0\) where \(0=0\) eff, \(8=\) falf intensity, and \(18=\) ftil inuensuly, andminking shoudd be enabled (via ATC indexed Reg̣ister 10 bil 3).

\section*{Cohor}
\begin{tabular}{ll} 
Attribute & \\
b: & Descripton \\
7 & Background red \\
6 & Background grecn \\
5 & Barkground blue \\
4 & Foreground red \\
3 & Forcground grecn \\
2 & Foreground hive \\
1.0 & Foras select
\end{tabular}

Used to seleat up to four simultanews solt fonts and up to four simultaneous character sets for display. Eil 2 is not used for fon sctoci For color operation. See Table 5.3-4 CPU/CRTC Addressing Modes. nule (When ATC I<7s is set wI TS Indexed Hegister 3; Font Select is nol used.)

Note that to get the atributes incicated here, the ATC. Paleta RAM registers 8-F should be set cqual to register 0.7 (regigiers \(0-7\) containing the nomat range of conlors), and blitking should be disabled (via
 sct \(>=\) the characier height.

\subsection*{5.7 CRTCB/Sprite Register Descriptions}
\begin{tabular}{|c|c|}
\hline rdex & Register \\
\hline EO & CRICB/Sprice HorizonLil Pixel Position Low \\
\hline El & CRTCB/Sprite Horrizontal Pixel Position High \\
\hline E2 & CRTCB Width Low/Sprite Horizontal Preset \\
\hline E3 & CRTCB Widh High \\
\hline EA & CRICB/Sprite Yertical Pixel Position Low \\
\hline ES & CRTCE/Sprite Vertical Pixel Posilion High \\
\hline E6 & CRTCB height Low/Sprite Verical Presst \\
\hline E7 & CRTCB Heighı High \\
\hline Es & CR TCB/Sprte Starting Address L.ow \\
\hline E9 & CRTCB/Sprite Slarting Address Middle \\
\hline Ea & CRTCE/Sprite Slarting Address ligh \\
\hline EB & CRTCBSpric Row Orfsel Lew \\
\hline EC & CRTCE/Sprite Row Offsel High \\
\hline Ev & CRTCB Pixel Panning \\
\hline EE & CRTCB Color Depth \\
\hline EF & CRTCB/Sprte Contrul \\
\hline
\end{tabular}

The CRTCB/Sprte registers arc accessed using an indexed addrensing scheme whereby a number selecting a register is lirst
 regiscers use indices \(E O\) through \(E F\).

The Irdex Register al address \(21 \times A\) is also used to adifress the IMA Indexed Registers, see Section 5.8 for details
The value of ' \(x\) ' in the addresses \(21 x A\) and \(21 \times B\) isdecemined by the logical walue on the \(1 O D<2: 0\) ) pins of the chip at powerup resec; see Section 3 for decails.

\subsection*{5.7.1 CRTCB index Register}
\(1 / 0\) address \(=21 \mathrm{xA}\)
\begin{tabular}{lll} 
Bit & \begin{tabular}{l} 
Description \\
Indexed register scicer.
\end{tabular} & Access \\
7:0 & RW
\end{tabular}

This register is used to selert the CRTCB/Sprite indexed register llat is accessed whern address 2 ixB is read or wrilent
5.7.2 CRTCB/Sprite Horlzontal Pixel Position Low (Index: E0) (10) address \(=21 \times B\)

Descriptlon
Horizontal pixel posiuon, bits <7:\%

\section*{Access} RW

\subsection*{5.7.3 CRTCB/Sprite Horizantal Pixel Posltion High (Index: E1) LO addrcss \(=21 \times \mathrm{B}\)}
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 4\) & Rescrved. & \\
\(3: 0\) & Horzonkat pixct pesition, b:Ls <11:8> & RW
\end{tabular}

Rescrved.
Horzoncit piecs position, b:Ls <ll:8>. RW

\section*{Description}
 of the CRTCB wirdow ct Sprue, relative tothe Ictimost edze ol the CRTC actue peoture ara

\subsection*{5.7.4 CATCE Widh Low'Sprite Horizontal Preset (Index: E2)}

I/O address = \(21 \times \mathrm{B}\)
Bil
Description
Access
CRTCB widh, bis < 7 -O×/Spate horizonal peres.

Bil
\(7: 6\)
KW

Git
Description
Bils 3:0
When the GRTCB is selected (with CRTCB/Sprite indexed Register EF, bit 0), this regester cuntams
 te I less thar the destred wath.
 refalive to dhe begumang of the sprite area ar whith display of the spite starts. The sprite does nol wrap

 restrution dues wol apply when the Sputc is Enatled
\(\qquad\)

\subsection*{5.7.5 CATCB Width High (Index: E3)}
\(1 / 0\) address \(=21 \mathrm{AB}\)
\begin{tabular}{lll} 
Bit & Description & Access \\
7:4 & Reserved. & \\
\(3: 0\) & CRTCB width, bits \(\langle 11: B \geqslant\) & KW
\end{tabular}

\section*{Eit \\ Bits 3:0}

\section*{Description}

When the CR1CB is selected (wilh CRTCB/Sprite Indexed Register EF. bit O), this register contains bits \(<11: 8>\) of the 12 -bit value definitig the width of che CRTCB window in pixels. The value loaded should be 1 less than the desired width.

NOTE: PTogramming of the CRTCB display arca must not exced the bound arites of the CRTC (primary) display area. This restenction does not apply when the Sprite is crabled.

\subsection*{5.7.6 CATCB/Sprite Vertical Pixel Position Low (Index: E4)}
\(1 / 0\) address \(=21 \times B\)

\section*{Bil}

\section*{Description}

Verical pixel position, bits c7:0;

\section*{Access \\ RW}

\subsection*{5.7.7 CRTCE/Sprite Vertical Pixel Posilion High (Index: E5)} 1/0 address \(=21 \mathrm{xB}\)
\begin{tabular}{|c|c|c|}
\hline Bit & Destriplion & Access \\
\hline 7:4 & Reserved & \\
\hline 3:0 & Ventical pixel prosition, bits <11:8>. & RW \\
\hline Bit & Description & \\
\hline Bits 11:0 & The Verical Pixel Pos: Ifon is de pos: of the CRTCE window or Sprite, rel & of the mpmostedyeof deacturly displayed potion ocl edge of CRTC ative piclure arca. \\
\hline
\end{tabular}

Augusl 21, 1992@8:34 aआ

\subsection*{5.7.8 CRTCB Height Low/Sprite Vertical Presel (Index: E6)} \(\mathrm{y} / \mathrm{O}\) address \(=21 \mathrm{xB}\)
\begin{tabular}{lll} 
Blt & Description & Aceess \\
\(7: 0\) & CRTCB hcigh. biLse7:0>/Sfrite verical Presct. & RW
\end{tabular}

Bit

\section*{Description}

Bits 7:0
 \(<7\).0) of the 12 -bit value defming the heigh of the CRTCB window in sean fines. The value Ju uted shou. be 1 less than the desired beight.



 restriction does nut apply wher the Sprite is enaliet.
5.7.9 CRTCB Height High (index: E7)

1 O addecss \(=21 \times B\)
\begin{tabular}{|c|c|c|}
\hline Bit & Descriplion & Access \\
\hline 7.4 & kesewert. & \\
\hline 3.0 & CRTCR height, bels ci: \(\mathrm{S}_{\text {cos }}\) & KW \\
\hline
\end{tabular}
git Description


te: I lese than the desiced height.
 restricton dese whapoly when the Sprive is enabled.
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7 ; 0\) & CRTCB/Sprite starting address, bils \(<7: 0>\) & RW
\end{tabular}

\subsection*{5.7.11 CRTCB/Sprite Starting Address Middle Register (Index: E9) \\ NO address \(=21 \times 13\)}
\begin{tabular}{lll} 
Bin & Description & Access \\
\(7: 0\) & CRTCB/Sprite staning address, bits \(<15: 8>\) & RW
\end{tabular}
\(7: 0\) CRTCB/Sprite stancing address, bits < \(15: 8>\). RW

\subsection*{5.7.12 CRTCB/Sprite Starting Address High Register (Index: EA) \\ \(1 / 0\) addres \(=21 x \mathrm{~B}\)}


\subsection*{5.7.13 CATCB/Sprite Row Offset Low Reglster (Index: EB) \\ L/O address \(=21 \times \mathrm{B}\)}
Bit
7:0
Description
Mernory address offsel, bits < \(7: 0>\).

\section*{Access}

\subsection*{5.7.14 CRTCE/Sprite Row Offsel High Register (Index: EC)}
\(1 / O\) address \(=21 \times b\)
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 4\) & Reserved. & \\
\(3: 0\) & Mernory address offsec, bit \(\times 11: 8>\) & RW
\end{tabular}
\(8 i\)
Bis 110

\section*{Description}



Description
Bit
Display enatilc.
Reserved.
CRTCD pixel parning.

Description

CRTCB/Sprite last scan line. \(\quad\) RO RO RW

When hiph indicales the lizt scan line has teen displayed for the CRTCB/Sprife.
This bit refocts reat time stalus of the BDE pin iSce Section 3.7.2, for CKTCB/Sprite
 op to nirie pixels are supported. Nole that in 9 -dot moides, a yahle of 8 significs no stift, ant ithe vaiue: ont 07 signify slifts of \(1-8\) paxels, respectively



\(\qquad\) -.

5.7.17 CRTCBSPrite Control (Index: EF) \(1 \%\) address \(=21 \times B\)
\begin{tabular}{|c|c|c|}
\hline git & Description & Access \\
\hline 7:2 & Reserved. & \\
\hline 2 & Sprite size contrul. & RW \\
\hline 1 & B pixel overlay/B pixei data cuipul & RW \\
\hline 0 & CKTCB/Sprie selats. & RW \\
\hline Bir & \multicolumn{2}{|l|}{Description} \\
\hline Bit 2 & \multicolumn{2}{|l|}{When sel to 1, sets sfrite size to \(128 \times 125\).} \\
\hline & \multicolumn{2}{|l|}{When set to 0, specifics sprite size at \(64 \times 64\).} \\
\hline Bit 1 & \multicolumn{2}{|l|}{When selt to 1 , sparifics that the CRTCB pixe's everlay the CRTC (i.c., nomally displayed) pixels.} \\
\hline & \multicolumn{2}{|l|}{When sec to 0, the CRTCB pixei dala \{2-hic sprite\} is output to the S \(]^{3} \times 1: 0 \times\) pins.} \\
\hline Eito & \multicolumn{2}{|l|}{When set to l , selects the CRTCR functuonirg.} \\
\hline
\end{tabular}

\section*{Description}

Restrved.
Sprote size control. CRTCB/Sprite selct

\section*{RW KW}

Description
Wen

When sel to 1 , spsifics that the CRTCB pixe's everlay the CRTC (i.c., nomally displayed) pixels.


When set to 0 , selects the sprite, Sec also Section 5.8.9. Whatadexed Register Fr.
```

T

```

\subsection*{5.8 IMA Register Descriptions}

\section*{MA Indexed Registers}

Image Starting Address Low Image Starting Address Midtte Image Starting Address Mrddr
Image Staning Address High Image Staning Address High Image Transfer Length Lou
Image Transfer Length High image Transfer Leng
lmage Row OTSel Low Image Row Offres High image Row Offisel Hig
Image Fort Control

\subsection*{5.8.1 Indexed Addressing}

The \(I M A\) registers anc accessed using an indexed addressing schenie whereby a number selecring a register is first writhen to address \(21 \times A\) (Indcx) and then the regiscer can be read from or willen to ar address \(21 \times B\). The IMA registers use indice F0 through F7.
The Index Regisaer al addess \(21 \times A\) is atso used to address the CRTCB/Sprice Intexed Regiseers, see Section S. 7 for denails up resect sec Secrion 3 for deails
\(\pi\)
5.8.2 IMA Indexed Reglster F0: Image Starting Address Low 1/O address = 2 \(1 \times \mathrm{D}\)

Descriptlon Image staring address, bits <7:0-

\section*{Access} KW
5.8.3 IMA Inciexed Register Ft: Image Starting Address Midde 1/O address \(=21 \times B\)
Bit Description Access

\subsection*{5.8.4 IMA Indexed Register F2: Image Starting Address High L/O address \(=21 \times B\)}

Description
Reserved.
Hase saareng address, buts < \(19: 16>\). KW

\section*{Description}

 a value of fi4 (ic. 25ti4) showld be programined inte these registers.

\subsection*{5.8.5 JMA Indexed Register F3: Image Transfer Length Low \\ I/O Address \(=21 \times B\)}

5.8.9 IMA Indexed Regtster F7: Image Part Control 10 Addres. \(=21 \times B\)

\section*{Description}

\section*{CRTCB/Sprite cnable}

\section*{cscrved.}
nicrlace Image Por address.
Image Por crable.

\section*{Access \\ RH}

RH
RW

\section*{Description}

When setto 1 , errables theCR TCB or the Sprite, whiche ver is selected in \(\mathrm{CRICB} / \mathrm{Sprite}\) Iutered Rezelste; EF, bit 0 . When set to 0 , disables CRTCB or SFrite. At resen, this bit has a value of 0 .

When set to 1 , enables oddeven interlace tansfer. When set to 0 , enables linean interdace transfer Suct Section 2.2.7 for additional information. Al resel, this bit has a valuc or 0 .
 When set te 0 , disalues the !mage Port, meaning that atl the inputs to the trage Por are ignored arn toc pins assumee their altemate functions. Ac resel, chis bit has a value of 0

\subsection*{5.9 MMU Register Descriptions}

See Section 73 for the memory base address for the MMUU regiscers. The offset in the table belaw is added to the base addres; to cticulate the actual address of the register.

\section*{Begisler
MMM1 Mcmery Base Pointes Register 0 MMU1 Memory Base Poirter Register 1} MMU Mcmory Base Pobter Register 1
MMU Mcmory Base Pointer Regisler 2 MMU Control Register

\subsection*{5.9.1 MBU Memory Base Polnter Register 0 Mencry offset \(=00\)}
```

Git
31:22
21:0
Bit
Bits 21:0

```

Description

\section*{Description}

Memory base pointer. RW

The base pointer defines be staning address in display metmory of MMI aperture numilei 0

\subsection*{5.9.2 MMU Memory Base Polnter Register 1} Memory ofiset = 04
Bit
\(31: 22\)
\(21: 0\)

Bit

\section*{Descriplion} Reserved.
Memery basc poince:

\section*{Access}

RW

\section*{Description}

The base peinter defines the staring address in disploy nemory of MML ajertife rumber 1 .

\subsection*{5.9.3 MMU Memory Base Pointer Register 2} Memcry offert \(=68\)
\begin{tabular}{ll}
\begin{tabular}{l} 
Description \\
Reserved. \\
Memary hasc pain:cr.
\end{tabular} & Access \\
\end{tabular}

Description

5.9.4 MMU Control Register

Memory offsel \(=1,3\)
\begin{tabular}{ll} 
Descriplion & Access \\
Reserved \\
Linear Address Control (LAC). & RW \\
Reserwed. & RW \\
Aperturc type (AP'T) &
\end{tabular}
 There is one hinear Aadress Controt the 4 wo aperture 0 .

When set wo the mentory is crganized accordirg to the current disflay modt
 mod:tseaticns were made:

> TS2<:3.0 \(x=1111\)
> TS \(4<3>=1\)
> \(G D C \cdot 1<3: 0>=(0)(B)\)
> GIC \(3<4: 0>=0\) KKN
> \(\mathrm{GDC} 5<3 \mathrm{~s}=0\)
> GDC5c:103-00
> GECe \(-1>=0\)
> GDCH-7:0>-11111111

 or not.



Reserved
Linear Address Control (LAC)
Aperture type (A \({ }^{3}\) T )

\section*{5．10 ACL Register Descriptions}

See Section 73 for the memory base address for the MMU registers．The offsel in the table below is added to the base addres to calculate the actual address of the register．

\section*{Regisier}

Non－Quewed Resisters
ACL Suspend／Teminate Registes
ACL Operation Slate Repister
ACL Sync Enole Hegister
ACL Sun Enable Register
ACL Intertupt Mask Register
ACI Accelerator Staws Register

\section*{Ouened Registers}

ACL Pattem Address Register
ACI Source Address Regisler
ACI Pattern Y Offset Registes
ACL Source Y Orfsel Register ACL Destination Y Offset Registe ACL Virtual Bus Size Regiscer ACL X／Y Direction Register ACL Patern Wrap Register
ACL Source Wrap Regisics
ACL X Posilion Register
ACL Y Position Register
ACL X Cown Register
ACL Y Cound Registel
ACL Routing Cantrol Regiscez ACL Reload Control Regisuer ACL Background Rasler Operation Repister ACL Forcground Raster Operauion Register ACL Destimation Address Reguster

\section*{T}

5．10．1 ACL Suspend／Terminate Register
This is a mentqueued register
Mertary offsct \(=30\)

\section*{Bit}

7：4
4．1
0

Bit
Bil 4

Bic 0

\section*{Description}

Reserveri
anninate A celerator Oneration（TO）
Reserved．
Suspend Actelerator Operation（SO）

Access

\section*{escription}
ised to terminate an Accelerator operation．To terminate an Accelerator operation，the programmer lopuld write a 1 to this bit，wail for RDST（ACL Slalus Register，bit 0）to be 0 ，there write a 0 to this bit，
 valuesthat they contain after a reset of thechip．The proerommer is aitwised he tean al accelerentre registers as having underined values afler a cermination，and reprogration all registers before initialiag anecher accelerator operation．

Used to susperid an Auceleraton operation．To suspent an Accelerator operation，the programmer should


5．10．2 ACL Operation State Register
Thes is a non quevers rezister
Memery nfiset－ 31
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Bit}} & \multirow[b]{2}{*}{} \\
\hline & & \\
\hline
\end{tabular}

When sel to 0 ，to action is take
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Description Acces} \\
\hline Reserved． & \\
\hline Resume Accelerabr Onerane（RMO）． & W） \\
\hline Reserveg & \\
\hline Restere Acelerator Opxraten swate（R5O）． & Wo \\
\hline
\end{tabular}

When ser to 1 ，ilde state in the accelerator＇s queuc as transfered to the interna：registers of the accelvrats：
When sel wo montion is laken．



\section*{1直 August 21, 1992 @ \(8: 34 \mathrm{am}\)}

\subsection*{5.10.3 ACL Sync Enable Register}

This is a non-queued registe
Memcry offsel \(=32\)


\subsection*{5.10.4 ACL Interrupt Mask Register}

This is a non-queued register
Memory offsct \(=34\)
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 3\) & Reserved. & \\
2 & Write Failt Interrupt Frrable. & RW \\
1 & Read Interrupt Enable. & RW \\
0 & Write Interrupt Enable. & RW
\end{tabular}

Description
When set to 1 , enables a Write Fault Interupt when a write wa fill queur occurs (ard ACL Syne Enabls
 write occurs. The internup is cleated by a write of 1 to the Write Faull Interrupt Status bil iaCl fundig Status Register, bil 2).

Wher set to 0 , this tneerrupt is disablet.
When set to A , enables a Read Inifrrupt when the quene is emply and the Accelerator goes tron busy to idle. This is an EVENT-triggcred incertupti i.e., the intermupi line assers when the acceleraton goves frous busy to idle. The inlerrupt is cleated by a wrice of 1 whtie Read Internupi Stalus bit (ACL Interfapt Stalus Regiscer, bill).

When sel to 0, this interrupt is disalsed.
When set to 1 , enables a Write Internupt when the queve is not full. This sa STATE-Itiggered incerrupt
 by disabling it

When sel to 0, thas iaterrupt as disabled

\section*{\(\pi\)}

\subsection*{3.10.5 ACL Interrupt Status Reglster} This is a nom-queued regiter Merocry offsci \(=35\)

\section*{Description}

When set to 0 . the value of this bit is unafected.

Wher sel to 0, the value of this hit is uriaffected.

\section*{Description}

\section*{Access}

Rescrued.
RW
Write Faull Interrupt Status.
Rcad Intemupt Status
Wrie Imierrupt Status

A value of 1 indicates that de curtent internupt condifion was cansed by a Wrate Faula
When set in 1 , clears the Werice Fauth Jmernaf ecrution.

A value of l indiates that the curent interngh corditiun was caused by a Read traterrupl.
When sel to 1, clcars the Read interrup: tonditien.

A value of 1 indicates tha: the curent itserirupt condition was caused by a wiste lecterngl To clear the

5.10.- ACL Accelerator Stalus Register

This is a non-queued register
Memory offset \(=36\)
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 4\) & Rescrved & \\
3 & Screvi-to-Scrsen Scatus (SSO). & RO \\
2 & XY Status (XYST). & RW \\
1 & Read Status (RDST). & RO \\
0 & Write Status (WRST). & RO
\end{tabular}

A value of 1 indicates that ine current Accelerator uperation is a screen-to-screen oparration. This bit is only valid when bit 2 is 1 . It is used by State-Restore software to deternine if a write \(\frac{1}{}\) ihe RMO bit (ACl Operation Stale Register, bal 3) is necessary.

2 A value of 1 indicatcs thal the Acselerator is processin!g an \(X / Y\) block. An " \(X / Y\) Biock" means chat the accelerator's internat XPOS, YPOS have not yct reached the terminal XCNT, YCNT for a given operation Note that this bit must be restered when the stare is restored for a suspeaded uperatuon.

Bit \(1 \quad\) A valde of 1 indicates that the Accelerator is basy (i.e., may be mod fying tisplay memory) on tlue queue is not emply.

A value of of indicates that the Acce:erator is ide and the queus is empty, ot the Aceelerator is suspended In other words, when this bit is 0 , the hos: is guaranteed to read corcect results from the display mernory and from the accelerator's internal registers.

A value of 1 indicates that the accelerator's queate is full. ant cannol accept any more host wrib's.
 or to an accelerated MMU apcrture.

\section*{Tii}

\section*{GUEUED REGISTERS}

Qucued registers are found al memory offses in the range 80 to \(\operatorname{FF}\). Thesc registers are used to sel up parameters for Accelerator uperations

\subsection*{5.10.7 ACL Pattern Address Reglister}

This is a queuert regisler
demary offset \(=80\)
\begin{tabular}{lll} 
Bit & Description & Acces \\
\(31: 22\) & Rescrveit & \\
\(21: 0\) & Patcre Address. & KW
\end{tabular}

Bit
Bis 21:0

Descriptio
This value is the absolate addecis an display memnory fert:e Patern Map. It should be progranamed no poin wh the irsi byte to be precessed by a given acceterated graphics operation.

\subsection*{5.10.8 ACL Source Address Register}

This is a queued register
Menory ofisel \(=84\)
\begin{tabular}{|c|c|c|}
\hline Bit & Description & Access \\
\hline 31:22 & Reserved. & \\
\hline 21:0 & Sunce Adtuess. & KW \\
\hline Bil & Description & \\
\hline Bils 2:0 & This value is the winthe fissleyte to & graplhics of \\
\hline
\end{tabular}

\subsection*{5.10.9 ACL Pattern Y Olfset Register} This is a queued register
\begin{tabular}{lll} 
Bit & Descrlption & Access \\
15:12 & \begin{tabular}{l} 
Reserved. \\
Patlem Y Offset.
\end{tabular} & RW
\end{tabular}

\section*{Description}
lile the amoral beaddo one fine to the next during Accelerator operainons. The actual value programmed is one less than the be progranamed into this register.

\subsection*{5.10.10 ACL Source Y Offset Register}

This is a queued regi:stc
Memory offset \(=8 \mathrm{~A}\)
\begin{tabular}{lll} 
Bit & Description & Access \\
\(15: 12\) & Reserved. \\
Sowion & SW
\end{tabular}

This value is the amount whe added to the accelerator's internal Source adturess puinter when ging froti desired number of bytes to be adted. For example, if he Source Map is 640 pixels widc, a valur of 634 shotld be programmed into this register.

\section*{Tii}
5.10.11 ACL Destination Y Ofisel Reglster

This is a queued register
Memery offact \(=8 \mathrm{C}\)
\begin{tabular}{lll} 
Bit & Description & Access \\
\(15: 12\) & Rescred. & \\
11.0 & Bestüation Y Oחset. & RW
\end{tabular}

\section*{Description}

This value is the amount to be addedtode accelerator's incernal Destination address printer when goine from ore line to the next during Accelerator operations. The actial value programared is one less tha:
 of 630 should be pragratiomed into this register.

8/21/92

\subsection*{5.10.12 ACL Virtual Bus Size Register}

This is a queved regislet
Memary offset \(=8 \mathrm{E}\)
\begin{tabular}{|c|c|c|}
\hline Eit & \multicolumn{2}{|l|}{Descriplion} \\
\hline 7:2 & Reserved. & \\
\hline \(1: 0\) & \multicolumn{2}{|l|}{Virtual Bus Size (VBS).} \\
\hline 819 & \multicolumn{2}{|l|}{Description} \\
\hline Bits 1:0 & \multicolumn{2}{|l|}{The Virtual Bus Size is only enforced when the host is an accelerated operation. It is enconted as follows:} \\
\hline & yes & \\
\hline & 00 & J-byle \\
\hline & 01 & 2-byte \\
\hline & 10 & 4-byce \\
\hline & 11 & Rescived \\
\hline
\end{tabular}

The Host Interface of the ET4COO/W32 wairs for this many bytes and then releases the cata to the accelcrator. The Virtial Bus Size also cuntrols the anluund addresses are io be incremented for each host cata teansfer to the accelerator. The increment value adsu depends on the ADRO and DARO values (sec Section S.10.20, ACL Rouung Control Register:
\begin{tabular}{|c|c|c|c|}
\hline YPS & AORP & DARQ & Increment \\
\hline \(x x^{1}\) & 00 & 000 & N/A (NoCPPU data transfer) \\
\hline \(x{ }^{\text {a }}\) & 01 & (1) & 1-byte \\
\hline 00 & *x & 001 & 1-byle \\
\hline 01 & \(x \times\) & 001 & 2-byles \\
\hline 10 & kx & 01 & 4-bytes \\
\hline 00 & Ax & 010 & 8 -bytes \\
\hline 01 & \({ }^{2} \times\) & 010 & 16 bytes \\
\hline 10 & \(x \times\) & Q10 & 32.bytes \\
\hline \(1]\) & \(x \times\) & xxx & Rewreer. \\
\hline
\end{tabular}
5.10.13 ACL \(X / Y\) Direction Feglster

This is a queued register
Memory oftisel \(=\) BF
\begin{tabular}{lll} 
Bit & Description & Access \\
\(7: 2\) & Reserved. & \\
1 & Y Dircction. & RW \\
0 & X Directicn. & RW \\
& & \\
Bit & Description &
\end{tabular}

Bits 1:0
Thes bits indicate in wheh dirstion the atcelcrated operaion will procesd
Hen sat wo the Accelesator ope eates from the lowest address to highest address (jacreasing direction)
When figure below sumatizes the eflcel of various programmed vaiues:


5，10．14 ACL Pattern Wrap Regtste

\section*{This is a queued regisit}

Memory offser \(=90\)
\begin{tabular}{|c|c|c|}
\hline Bi & Descriplion & Access \\
\hline 6：4 & Reserved． & \\
\hline \(6: 4\)
3 & Pattern Y Wrap（PYWR）． Reseracd & RW \\
\hline 2：0 & Patern X Wrap（PXWR）． & RW \\
\hline Bit & \multicolumn{2}{|l|}{Description} \\
\hline Bits 6：4 & \multicolumn{2}{|l|}{The Patcm X Wrap and Patem Y Wrap fietds define ats \(x\)－by－y tije size for the Parem Mop，Alur the} \\
\hline Bits 2：0 & \multicolumn{2}{|l|}{Accelerator operates on the wrap－length number of bytes（hurizontally）or lines（verically），the Fatiem pointer is stt back wrap－length number of bytes or lines．The Source map has urap control registers that are idenical to the Pattem} \\
\hline
\end{tabular} pointer is set back wrap－length number of bytes or lines．The Source map has urap control registers tha：
are idenaical to the Fattem．
\begin{tabular}{|c|c|}
\hline Pattern X & Hiorizontal \\
\hline Whap & Wrap Lenalh \\
\hline OGM & Reserved \\
\hline 001 & Reserved \\
\hline 010 & 4 bype \\
\hline 011 & 8 byre \\
\hline 100 & \(16 . b y x^{\text {d }}\) \\
\hline 101 & 32－by¢ \\
\hline 110 & 64 －byle \\
\hline 111 & No wrap \\
\hline Раныгп Y & Vertical \\
\hline Wras & Wrap Length \\
\hline 000 & 1 －tise \\
\hline 001 & 2－小ine \\
\hline 010 & 4－line \\
\hline 011 & 8－line \\
\hline 100 & Restrea \\
\hline 101 & Reserved \\
\hline 110 & Reserved \\
\hline 111 & Nio wrap \\
\hline
\end{tabular}

5，10．15 ACL Source Wrap Register
This is a queued register
Memery offsel＝ 92

日it
7
\(6: 4\)
3
2：0

Bit
Bis
0 Bis 2：0

Description
Kescerved．
Source Y Wray（SYWR）．RW
Reserved．
Source X Wrap（SXWR）．RW

Description
See Secion 5 10．14，ACL Pathe：त Wrap Register fer an explanation of this register

\section*{Access}

5．10．16 ACL X Position Register
This is a quetied regisht
Memory offisel－94
\begin{tabular}{lll} 
Bi1 & Deseriplion & Access \\
\(15: 17\) & Keserved． & \\
\(11: 0\) & XFowitori． & KH
\end{tabular}

Reserved．
X Fasitor．

Bit
BiLs 11：0

Description
 Ream and





 accerctaned operation に initialed

T

\subsection*{5.10.17 ACL Y Position Register}

\section*{This is a quened register}

Mernory offset \(=96\)
\begin{tabular}{lll} 
Eit & Description & Access \\
\(15: 12\) & \begin{tabular}{l} 
Rescrved.
\end{tabular} \\
\(11: 0\) & Y Position. & RW
\end{tabular}

\subsection*{5.10.18 ACL X Count Register}

This is a queued register
Memory offset \(=98\)
\begin{tabular}{|c|c|c|}
\hline Eft & Description & Access \\
\hline 15:12 & Rescrved. & Access \\
\hline 11:0 & \(x\) count. & RW \\
\hline Eit & Description & \\
\hline Bits 11:0 & This value speci X Court shoul & sion or \\
\hline
\end{tabular}

\subsection*{5.10.19 ACL \(\gamma\) Count Register}

This is a queucd register
Memory offict \(=9 \mathrm{~A}\)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{Ba} \\
& 15: 12
\end{aligned}
\] & Description Reserved. & Access \\
\hline 11:0 & Y Coum. & RW \\
\hline 8 II & Description & \\
\hline Biss 1:0 & \begin{tabular}{l}
This value spec \\
Y Coust should
\end{tabular} & icn on sired \\
\hline
\end{tabular}

This value specifies the number of lanes in the Y dimension on which the accelcrator should noperate. The Y Count shata be programmed to one less damy he desired number of lanes wh berated on.

\section*{11 Augusi 21, 1992@8:35 am}

\subsection*{5.10.20 ACL Routing Control Reglster}

This is a quepued register
Memor; offict \(=9 \mathrm{C}\)

Eit
\(7: 61\)
5.4
\(5: 4\)
3
2:0

Bit
Bias 5.4


\section*{Acces 5}

RW
RW

Description
 the destanation address. Then, as the accelerated ofreraion progeresies, the destration poiriter is updeled automaically.

Bits 2:9
Rouling of CPU tola:
DARE CPL dita nel used
OW: CPL disala nel used
00] CPL data is Source dat
arl CPC dote
Holl Reserved \(\quad\) CFu ditus \(X\) Count

11x zeserved




\subsection*{5.10.22 ACL Background Raster Operation Register This is a queucd registe}

\section*{Description}

Background Raster Operation (BGR).

\section*{Access \\ KW}

Description
This is the logical operation betwern Source. Fattem, and Destination Maps used when CPU data routimg is Mix Datie, and the Mix date but is a (see Section 5.10.20, ACL Roating Conirei Register). Seci also

5.10.24 ACL Dest[nation Address Register
\begin{tabular}{lll} 
Bit & Description & Access \\
\(31: 22\) & Rescred. & \\
\(21: 6\) & Desuration Adurss (DA). & RW
\end{tabular}
21:(i)
Desuration Aburss (DA)

Bit
Bis 21:0

Description

 memory atdress, simidat wany other ACL queved register. An implicis lost cocurs when a write is
 translation (which is arn absolutc addeess moto display mennery) is lusided imo this recrister,

\subsection*{5.10.21 ACL Relgad Control Reg'ster} This is a queted regisu
Memory offisel \(=9 \mathrm{D}\)
Bi1
\(7: 2\)
1
0

Bit
Bit 1

Bi1
\(7: 2\)
Description
Reserved.
Enable Reload of Pattern Address.

Enable Reload of Source Address.

Description

\section*{Access}

RW

When ser to 1 , the accelerator's Internal Pracern Address value (resulting from the previuus accelcratns operation) will be the starting Patem, eddrcss for the next atcelerator uperatorn.

When set to 0 , the programmed ACI. Pattem Address value will be tsed as the starting Pattem address.
Wher set to 1 , the accelerator's Intembal Source Address value (resuleing from tue previnus actelerator operation) will be the staning Source abdress for ule rexa atcelerasor operation.
When set wo 0 , the programetred AC. Scurce Address value will be used as lic stanting Source axddess.
Note that underinide restals occur if either of these bis is set to 1 when we very first accelerator preration is initiated, since the accelerator's intermad adress pointers are not initialived.

\section*{\(T\)}

\subsection*{5.10.23 ACL Foreground Raster Operation Register}

This ss a queued register
Memory offset \(=9 \mathrm{~F}\)

\section*{Description}

Foregrvund Raster Operation (FGR)

\section*{Access}

RW

\section*{Description}

T!is is the logical operation batween Source, 'attern, and Destination Maps used when C.PU deta reuting

 De- [aitions.```


[^0]:    
    ? vertira

[^1]:    HPP: lorjzont巨l Pixo? Tosition
    HP: Horizont

    EFP: Vertical Pixel Position VE: Vertical Preset

